Treatment with recombinant granulocyte colony-stimulating factor (Filgrastin) stimulates neutrophils and tissue macrophages and induces an effective non-specific response against Mycobacterium avium in mice.

TitleTreatment with recombinant granulocyte colony-stimulating factor (Filgrastin) stimulates neutrophils and tissue macrophages and induces an effective non-specific response against Mycobacterium avium in mice.
Publication TypeJournal Article
Year of Publication1998
AuthorsBermudez LE, Petrofsky M, Stevens P
JournalImmunology
Volume94
Issue3
Pagination297-303
Date Published1998 Jul
ISSN0019-2805
KeywordsAnimals, Drug Administration Schedule, Female, Granulocyte Colony-Stimulating Factor, Interleukin-10, Interleukin-12, Liver, Macrophage Activation, Mice, Mice, Inbred C57BL, Mycobacterium avium, Neutrophil Activation, Recombinant Proteins, Spleen, Tuberculosis
Abstract

A role of neutrophils in the host response against Mycobacterium avium (MAC) has recently been suggested. To investigate this matter further, we determined the effect of granulocyte colony-stimulating factor (G-CSF) on the outcome of MAC infection in mice. C57BL/6bg+/bg- black mice were intravenously infected with 1 x 10(7) MAC and then divided into four experimental groups to receive G-CSF as follows: (i) 10 micrograms/kg/day; (ii) 50 micrograms/kg/day; (iii) 100 micrograms/kg/day; (iv) placebo control. Mice were killed at 2 and 4 weeks of treatment to determine the bacterial load of liver and spleen. Treatment with G-CSF at both 10 and 50 micrograms/kg/day doses significantly decreased the number of viable bacteria in liver and spleen after 2 weeks (approximately 70.5% and 69.0%, respectively), and after 4 weeks (approximately 53% and 52%, respectively, P < 0.05 compared with placebo control). Treatment with 100 micrograms/kg/day did not result in decrease of bacterial colony-forming units in the liver and spleen after 4 weeks. Administration of G-CSF induced interleukin-10 (IL-10) and IL-12 production by splenocytes. To examine if the protective effect of G-CSF was accompanied by the activation of phagocytic cells, blood neutrophils and splenic macrophages were purified from mice receiving G-CSF and their ability to kill MAC was examined ex vivo. Neutrophils and macrophages from G-CSF-treated mice were able to inhibit the growth of or to kill MAC ex vivo, while phagocytic cells from untreated control mice had no anti-MAC effect. These results suggest that activation of neutrophils appears to induce an effective non-specific host defence against MAC, and further studies should aim for better understanding of the mechanisms of protection.

Alternate JournalImmunology