Found 32 results
Author Title [ Type(Desc)] Year
Filters: Keyword is Chlamydia trachomatis and Author is Daniel D Rockey  [Clear All Filters]
Journal Article
D. D. Rockey, Chesebro, B. B., Heinzen, R. A., and Hackstadt, T., A 28 kDa major immunogen of Chlamydia psittaci shares identity with Mip proteins of Legionella spp. and Chlamydia trachomatis-cloning and characterization of the C. psittaci mip-like gene., Microbiology (Reading), vol. 142 ( Pt 4), pp. 945-53, 1996.
M. K. Muramatsu, Brothwell, J. A., Stein, B. D., Putman, T. E., Rockey, D. D., and Nelson, D. E., Beyond Tryptophan Synthase: Identification of Genes That Contribute to Chlamydia trachomatis Survival during Gamma Interferon-Induced Persistence and Reactivation., Infect Immun, vol. 84, no. 10, pp. 2791-801, 2016.
J. P. Bannantine, Stamm, W. E., Suchland, R. J., and Rockey, D. D., Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates., Infect Immun, vol. 66, no. 12, pp. 6017-21, 1998.
T. Hackstadt, Rockey, D. D., Heinzen, R. A., and Scidmore, M. A., Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane., EMBO J, vol. 15, no. 5, pp. 964-77, 1996.
M. Xia, Suchland, R. J., Bumgarner, R. E., Peng, T., Rockey, D. D., and Stamm, W. E., Chlamydia trachomatis variant with nonfusing inclusions: growth dynamic and host-cell transcriptional response., J Infect Dis, vol. 192, no. 7, pp. 1229-36, 2005.
W. J. Brown, Skeiky, Y. A. W., Probst, P., and Rockey, D. D., Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol., Infect Immun, vol. 70, no. 10, pp. 5860-4, 2002.
D. Alzhanov, Barnes, J., Hruby, D. E., and Rockey, D. D., Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA., BMC Microbiol, vol. 4, p. 24, 2004.
R. J. Suchland, Carrell, S. J., Wang, Y., Hybiske, K., Kim, D. B., Dimond, Z. E., P Hefty, S., and Rockey, D. D., Chromosomal Recombination Targets in Interspecies Lateral Gene Transfer., J Bacteriol, vol. 201, no. 23, 2019.
D. T. Alzhanov, Suchland, R. J., Bakke, A. C., Stamm, W. E., and Rockey, D. D., Clonal isolation of chlamydia-infected cells using flow cytometry., J Microbiol Methods, vol. 68, no. 1, pp. 201-8, 2007.
T. E. Putman, Suchland, R. J., Ivanovitch, J. D., and Rockey, D. D., Culture-independent sequence analysis of Chlamydia trachomatis in urogenital specimens identifies regions of recombination and in-patient sequence mutations., Microbiology (Reading), vol. 159, no. Pt 10, pp. 2109-2117, 2013.
D. T. Alzhanov, Weeks, S. K., Burnett, J. R., and Rockey, D. D., Cytokinesis is blocked in mammalian cells transfected with Chlamydia trachomatis gene CT223., BMC Microbiol, vol. 9, p. 2, 2009.
R. J. Suchland, Dimond, Z. E., Putman, T. E., and Rockey, D. D., Demonstration of Persistent Infections and Genome Stability by Whole-Genome Sequencing of Repeat-Positive, Same-Serovar Chlamydia trachomatis Collected From the Female Genital Tract., J Infect Dis, vol. 215, no. 11, pp. 1657-1665, 2017.
R. J. Suchland, Rockey, D. D., Weeks, S. K., Alzhanov, D. T., and Stamm, W. E., Development of secondary inclusions in cells infected by Chlamydia trachomatis., Infect Immun, vol. 73, no. 7, pp. 3954-62, 2005.
R. A. Heinzen, Scidmore, M. A., Rockey, D. D., and Hackstadt, T., Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis., Infect Immun, vol. 64, no. 3, pp. 796-809, 1996.
D. D. Rockey, Viratyosin, W., Bannantine, J. P., Suchland, R. J., and Stamm, W. E., Diversity within inc genes of clinical Chlamydia trachomatis variant isolates that occupy non-fusogenic inclusions., Microbiology (Reading), vol. 148, no. Pt 8, pp. 2497-2505, 2002.
E. D. Cram, Simmons, R. S., Palmer, A. L., Hildebrand, W. H., Rockey, D. D., and Dolan, B. P., Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection., Infect Immun, vol. 84, no. 2, pp. 480-90, 2016.
W. M. Geisler, Suchland, R. J., Rockey, D. D., and Stamm, W. E., Epidemiology and clinical manifestations of unique Chlamydia trachomatis isolates that occupy nonfusogenic inclusions., J Infect Dis, vol. 184, no. 7, pp. 879-84, 2001.
B. M. Jeffrey, Suchland, R. J., Quinn, K. L., Davidson, J. R., Stamm, W. E., and Rockey, D. D., Genome sequencing of recent clinical Chlamydia trachomatis strains identifies loci associated with tissue tropism and regions of apparent recombination., Infect Immun, vol. 78, no. 6, pp. 2544-53, 2010.
B. M. Jeffrey, Suchland, R. J., Eriksen, S. G., Sandoz, K. M., and Rockey, D. D., Genomic and phenotypic characterization of in vitro-generated Chlamydia trachomatis recombinants., BMC Microbiol, vol. 13, p. 142, 2013.
H. G. Chu, Weeks, S. K., Gilligan, D. M., and Rockey, D. D., Host alpha-adducin is redistributed and localized to the inclusion membrane in chlamydia- and chlamydophila-infected cells., Microbiology (Reading), vol. 154, no. Pt 12, pp. 3848-3855, 2008.
W. J. Brown and Rockey, D. D., Identification of an antigen localized to an apparent septum within dividing chlamydiae., Infect Immun, vol. 68, no. 2, pp. 708-15, 2000.
R. J. Suchland, Jeffrey, B. M., Xia, M., Bhatia, A., Chu, H. G., Rockey, D. D., and Stamm, W. E., Identification of concomitant infection with Chlamydia trachomatis IncA-negative mutant and wild-type strains by genomic, transcriptional, and biological characterizations., Infect Immun, vol. 76, no. 12, pp. 5438-46, 2008.
J. A. Brothwell, Muramatsu, M. K., Toh, E., Rockey, D. D., Putman, T. E., Barta, M. L., P Hefty, S., Suchland, R. J., and Nelson, D. E., Interrogating Genes That Mediate Chlamydia trachomatis Survival in Cell Culture Using Conditional Mutants and Recombination., J Bacteriol, vol. 198, no. 15, pp. 2131-9, 2016.
R. J. Suchland, Rockey, D. D., Bannantine, J. P., and Stamm, W. E., Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane., Infect Immun, vol. 68, no. 1, pp. 360-7, 2000.
T. Hackstadt, Scidmore, M. A., and Rockey, D. D., Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion., Proc Natl Acad Sci U S A, vol. 92, no. 11, pp. 4877-81, 1995.

Pages