Found 451 results
Author Title [ Type(Asc)] Year
Filters: First Letter Of Last Name is P  [Clear All Filters]
Journal Article
M. Bodogai, O'Connell, J., Kim, K., Kim, Y., Moritoh, K., Chen, C., Gusev, F., Vaughan, K., Shulzhenko, N., Mattison, J. A., Lee-Chang, C., Chen, W., Carlson, O., Becker, K. G., Gurung, M., Morgun, A., White, J., Meade, T., Perdue, K., Mack, M., Ferrucci, L., Trinchieri, G., de Cabo, R., Rogaev, E., Egan, J., Wu, J., and Biragyn, A., Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells., Sci Transl Med, vol. 10, no. 467, 2018.
M. S. Davis, Royer, C. M., McKenzie, E. C., Williamson, K. K., Payton, M., and Marlin, D., Cold air-induced late-phase bronchoconstriction in horses., Equine veterinary journal. Supplement, no. 36, pp. 535-9, 2006.
A. M. Hau, Greenwood, J. A., Löhr, C. V., Serrill, J. D., Proteau, P. J., Ganley, I. G., McPhail, K. L., and Ishmael, J. E., Coibamide A induces mTOR-independent autophagy and cell death in human glioblastoma cells., PloS one, vol. 8, no. 6, p. e65250, 2013.
D. Paredes-Sabja, Sarker, N., and Sarker, M. R., Clostridium perfringens tpeL is expressed during sporulation., Microbial pathogenesis, vol. 51, no. 5, pp. 384-8, 2011.
D. Paredes-Sabja and Sarker, M. R., Clostridium perfringens sporulation and its relevance to pathogenesis., Future microbiology, vol. 4, no. 5, pp. 519-25, 2009.
D. Paredes-Sabja, J Torres, A., Setlow, P., and Sarker, M. R., Clostridium perfringens spore germination: characterization of germinants and their receptors., Journal of bacteriology, vol. 190, no. 4, pp. 1190-201, 2008.
S. Banawas, Paredes-Sabja, D., Korza, G., Li, Y., Hao, B., Setlow, P., and Sarker, M. R., The Clostridium perfringens germinant receptor protein GerKC is located in the spore inner membrane and is crucial for spore germination., Journal of bacteriology, vol. 195, no. 22, pp. 5084-91, 2013.
J. Barra-Carrasco, Olguín-Araneda, V., Plaza-Garrido, A., Miranda-Cárdenas, C., Cofré-Araneda, G., Pizarro-Guajardo, M., Sarker, M. R., and Paredes-Sabja, D., The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly., Journal of bacteriology, vol. 195, no. 17, pp. 3863-75, 2013.
J. Barra-Carrasco, Olguín-Araneda, V., Plaza-Garrido, A., Miranda-Cárdenas, C., Cofré-Araneda, G., Pizarro-Guajardo, M., Sarker, M. R., and Paredes-Sabja, D., The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly., Journal of bacteriology, vol. 195, no. 17, pp. 3863-75, 2013.
J. Barra-Carrasco, Olguín-Araneda, V., Plaza-Garrido, A., Miranda-Cárdenas, C., Cofré-Araneda, G., Pizarro-Guajardo, M., Sarker, M. R., and Paredes-Sabja, D., The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly., Journal of bacteriology, vol. 195, no. 17, pp. 3863-75, 2013.
A. J. Mathers, Poulter, M., Dirks, D., Carroll, J., Sifri, D. D., and Hazen, K. C., Clinical Microbiology Costs for Methods of Active Surveillance for Klebsiella pneumoniae Carbapenemase-Producing Enterobacteriaceae, Infection Control and Hospital Epidemiology, vol. 35, no. No. 4, pp. 350-355, 2014.
R. Roy MacGregor, Hafner, R., Wu, J. W., Murphy, R. L., Perlman, D. C., Bermudez, L. E., Inderlied, C. B., Picker, L. J., Wallis, R. S., Andersen, J. W., Mahon, L. F., Koletar, S. L., and Peterson, D. M., Clinical, microbiological, and immunological characteristics in HIV-infected subjects at risk for disseminated Mycobacterium avium complex disease: an AACTG study., AIDS research and human retroviruses, vol. 21, no. 8, pp. 689-95, 2005.
R. Roy MacGregor, Hafner, R., Wu, J. W., Murphy, R. L., Perlman, D. C., Bermudez, L. E., Inderlied, C. B., Picker, L. J., Wallis, R. S., Andersen, J. W., Mahon, L. F., Koletar, S. L., and Peterson, D. M., Clinical, microbiological, and immunological characteristics in HIV-infected subjects at risk for disseminated Mycobacterium avium complex disease: an AACTG study., AIDS research and human retroviruses, vol. 21, no. 8, pp. 689-95, 2005.
R. Roy MacGregor, Hafner, R., Wu, J. W., Murphy, R. L., Perlman, D. C., Bermudez, L. E., Inderlied, C. B., Picker, L. J., Wallis, R. S., Andersen, J. W., Mahon, L. F., Koletar, S. L., and Peterson, D. M., Clinical, microbiological, and immunological characteristics in HIV-infected subjects at risk for disseminated Mycobacterium avium complex disease: an AACTG study., AIDS research and human retroviruses, vol. 21, no. 8, pp. 689-95, 2005.
E. C. McKenzie, Eyrich, L. V., Payton, M. E., and Valberg, S. J., Clinical, histopathological and metabolic responses following exercise in Arabian horses with a history of exertional rhabdomyolysis., Vet J, vol. 216, pp. 196-201, 2016.
E. D. Lassen, Pearson, E. G., Long, P., Schmotzer, W. B., Kaneps, A. J., and Riebold, T. W., Clinical biochemical values of llamas: reference values., American journal of veterinary research, vol. 47, no. 10, pp. 2278-80, 1986.
L. E. Bermudez, Nash, K., Petrofsky, M., Young, L. S., and Inderlied, C. B., Clarithromycin-resistant mycobacterium avium is still susceptible to treatment with clarithromycin and is virulent in mice., Antimicrobial agents and chemotherapy, vol. 44, no. 10, pp. 2619-22, 2000.
L. E. Bermudez, Petrofsky, M., Wu, M., and Young, L. S., Clarithromycin significantly improves interleukin-12-mediated anti-Mycobacterium avium activity and abolishes toxicity in mice., The Journal of infectious diseases, vol. 178, no. 3, pp. 896-9, 1998.
L. E. Bermudez, Inderlied, C. B., Kolonoski, P., Petrofsky, M., and Young, L. S., Clarithromycin, dapsone, and a combination of both used to treat or prevent disseminated Mycobacterium avium infection in beige mice., Antimicrobial agents and chemotherapy, vol. 38, no. 12, pp. 2717-21, 1994.
W. J. Brown, Skeiky, Y. A. W., Probst, P., and Rockey, D. D., Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol., Infect Immun, vol. 70, no. 10, pp. 5860-4, 2002.
W. J. Brown, Skeiky, Y. A. W., Probst, P., and Rockey, D. D., Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol., Infection and immunity, vol. 70, no. 10, pp. 5860-4, 2002.
M. Xia, Suchland, R. J., Bumgarner, R. E., Peng, T., Rockey, D. D., and Stamm, W. E., Chlamydia trachomatis variant with nonfusing inclusions: growth dynamic and host-cell transcriptional response., The Journal of infectious diseases, vol. 192, no. 7, pp. 1229-36, 2005.
M. Xia, Suchland, R. J., Bumgarner, R. E., Peng, T., Rockey, D. D., and Stamm, W. E., Chlamydia trachomatis variant with nonfusing inclusions: growth dynamic and host-cell transcriptional response., J Infect Dis, vol. 192, no. 7, pp. 1229-36, 2005.
D. D. Rockey, Grosenbach, D., Hruby, D. E., Peacock, M. G., Heinzen, R. A., and Hackstadt, T., Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion., Molecular microbiology, vol. 24, no. 1, pp. 217-28, 1997.
D. D. Rockey, Grosenbach, D., Hruby, D. E., Peacock, M. G., Heinzen, R. A., and Hackstadt, T., Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion., Mol Microbiol, vol. 24, no. 1, pp. 217-28, 1997.

Pages