Found 1129 results
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
M. Beatty, Boni, M. F., Brown, S., Buathong, R., Burke, D., Coudeville, L., Cummings, D. A. T., Edelman, R., Farrar, J., Focks, D. A., M Gomes, G. M., Guignard, A., Halstead, S., Hombach, J., Knerer, G., Koelle, K., Lam, F. Chang, Lang, J., Longini, I., Medlock, J., Namgyal, P., Powell, M., Recker, M., Rohani, P., Standaert, B., Struchiner, C., Teyssou, R., and Wearing, H., Assessing the potential of a candidate dengue vaccine with mathematical modeling., PLoS neglected tropical diseases, vol. 6, no. 3, p. e1450, 2012.
P. Bebas, Goodall, C. P., Majewska, M., Neumann, A., Giebultowicz, J. M., and Chappell, P. E., Circadian clock and output genes are rhythmically expressed in extratesticular ducts and accessory organs of mice., The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol. 23, no. 2, pp. 523-33, 2009.
B. R. Beechler, Enemies and turncoats: bovine tuberculosis exposes pathogenic potential of Rift Valley fever virus in a common host, African buffalo (Syncerus caffer)., Proc Biol Sci, vol. 282, no. 1805, 2015.
B. R. Beechler, Broughton, H., Bell, A., Ezenwa, V. O., and Jolles, A. E., Innate immunity in free-ranging African buffalo (Syncerus caffer): associations with parasite infection and white blood cell counts., Physiological and biochemical zoology : PBZ, vol. 85, no. 3, pp. 255-64, 2012.
B. R. Beechler, Broughton, H., Bell, A., Ezenwa, V. O., and Jolles, A. E., Innate immunity in free-ranging African buffalo (Syncerus caffer): associations with parasite infection and white blood cell counts., Physiological and biochemical zoology : PBZ, vol. 85, no. 3, pp. 255-64, 2012.
B. R. Beechler, Rift valley Fever in Kruger national park: do buffalo play a role in the inter-epidemic circulation of virus?, Transbound Emerg Dis, vol. 62, no. 1, pp. 24-32, 2015.
B. R. Beechler, Jolles, A. E., and Ezenwa, V. O., Evaluation of hematologic values in free-ranging African buffalo (Syncerus caffer)., Journal of wildlife diseases, vol. 45, no. 1, pp. 57-66, 2009.
L. E. Bermudez, Inderlied, C. B., and Young, L. S., Mycobacterium avium complex in AIDS., Current clinical topics in infectious diseases, vol. 12, pp. 257-81, 1992.
L. E. Bermudez, Wu, M., Miltner, E., and Inderlied, C. B., Isolation of two subpopulations of Mycobacterium avium within human macrophages., FEMS microbiology letters, vol. 178, no. 1, pp. 19-26, 1999.
L. E. Bermudez, Motamedi, N., Kolonoski, P., Chee, C., Baimukanova, G., Bildfell, R. J., Wang, G., Phan, L. Tam, and S Lowell, Y., The efficacy of clarithromycin and the bicyclolide EDP-420 against Mycobacterium avium in a mouse model of pulmonary infection., The Journal of infectious diseases, vol. 197, no. 11, pp. 1506-10, 2008.
L. E. Bermudez, Wu, M., and Young, L. S., Interleukin-12-stimulated natural killer cells can activate human macrophages to inhibit growth of Mycobacterium avium., Infection and immunity, vol. 63, no. 10, pp. 4099-104, 1995.
L. E. Bermudez, Kolonoski, P., Petrofsky, M., Wu, M., Inderlied, C. B., and Young, L. S., Mefloquine, moxifloxacin, and ethambutol are a triple-drug alternative to macrolide-containing regimens for treatment of Mycobacterium avium disease., The Journal of infectious diseases, vol. 187, no. 12, pp. 1977-80, 2003.
L. E. Bermudez, Young, L. S., and Gupta, S., 1,25 Dihydroxyvitamin D3-dependent inhibition of growth or killing of Mycobacterium avium complex in human macrophages is mediated by TNF and GM-CSF., Cellular immunology, vol. 127, no. 2, pp. 432-41, 1990.
L. E. Bermudez, Sangari, F. J., and Parker, A., Green fluorescent protein in the measurement of bacteria-host interactions., Methods in enzymology, vol. 302, pp. 285-95, 1999.
L. E. Bermudez, Young, L. S., and Inderlied, C. B., Rifabutin and sparfloxacin but not azithromycin inhibit binding of Mycobacterium avium complex to HT-29 intestinal mucosal cells., Antimicrobial agents and chemotherapy, vol. 38, no. 5, pp. 1200-2, 1994.
L. E. Bermudez, Wu, M., Enkel, H., and Young, L. S., Naturally occurring antibodies against Mycobacterium avium complex., Annals of clinical and laboratory science, vol. 19, no. 6, pp. 435-43, 1989.
L. E. Bermudez, Parker, A., and Goodman, J. R., Growth within macrophages increases the efficiency of Mycobacterium avium in invading other macrophages by a complement receptor-independent pathway., Infection and immunity, vol. 65, no. 5, pp. 1916-25, 1997.
L. E. Bermudez, [Post-antibiotic effect in the treatment of infections in neutropenic patients]., Revista do Hospital das Clínicas, vol. 41, no. 2, pp. 76-9, 1986.
L. E. Bermudez, Nash, K. A., Petrofsky, M., Young, L. S., and Inderlied, C. B., Effect of ethambutol on emergence of clarithromycin-resistant Mycobacterium avium complex in the beige mouse model., The Journal of infectious diseases, vol. 174, no. 6, pp. 1218-22, 1996.
L. E. Bermudez and Yamazaki, Y., Effects of macrolides and ketolides on mycobacterial infections., Current pharmaceutical design, vol. 10, no. 26, pp. 3221-8, 2004.
L. E. Bermudez, Wu, M., Petrofsky, M., and Young, L. S., Interleukin-6 antagonizes tumor necrosis factor-mediated mycobacteriostatic and mycobactericidal activities in macrophages., Infection and immunity, vol. 60, no. 10, pp. 4245-52, 1992.
L. E. Bermudez and Young, L. S., Ethanol augments intracellular survival of Mycobacterium avium complex and impairs macrophage responses to cytokines., The Journal of infectious diseases, vol. 163, no. 6, pp. 1286-92, 1991.
L. E. Bermudez and Petrofsky, M., Host defense against Mycobacterium avium does not have an absolute requirement for major histocompatibility complex class I-restricted T cells., Infection and immunity, vol. 67, no. 6, pp. 3108-11, 1999.
L. E. Bermudez and Young, L. S., Killing of Mycobacterium avium: insights provided by the use of recombinant cytokines., Research in microbiology, vol. 141, no. 2, pp. 241-3, 1990.
L. E. Bermudez, Inderlied, C. B., Kolonoski, P., Petrofsky, M., and Young, L. S., Clarithromycin, dapsone, and a combination of both used to treat or prevent disseminated Mycobacterium avium infection in beige mice., Antimicrobial agents and chemotherapy, vol. 38, no. 12, pp. 2717-21, 1994.

Pages