Found 1825 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
R. S Monaghan, Kent, M. L., Watral, V. G., R Kaufman, J., Lee, L. E. J., and Bols, N. C., Animal cell cultures in microsporidial research: their general roles and their specific use for fish microsporidia., In vitro cellular & developmental biology. Animal, vol. 45, no. 3-4, pp. 135-47, 2009.
L. E. Bermudez, Petrofsky, M., Kolonoski, P., and Young, L. S., An animal model of Mycobacterium avium complex disseminated infection after colonization of the intestinal tract., The Journal of infectious diseases, vol. 165, no. 1, pp. 75-9, 1992.
J. Kaae and de Morais, H. Autran, Anion gap and strong ion gap: a quick reference., The Veterinary clinics of North America. Small animal practice, vol. 38, no. 3, pp. 443-7, viii, 2008.
K. Scollan, Salinardi, B., Bulmer, B. J., and D Sisson, D., Anomalous left-to-right shunting communication between the ascending aorta and right pulmonary artery in a dog., Journal of veterinary cardiology : the official journal of the European Society of Veterinary Cardiology, vol. 13, no. 2, pp. 147-52, 2011.
K. M. Sandoz and Rockey, D. D., Antibiotic resistance in Chlamydiae., Future microbiology, vol. 5, no. 9, pp. 1427-42, 2010.
K. M. Sandoz and Rockey, D. D., Antibiotic resistance in Chlamydiae., Future Microbiol, vol. 5, no. 9, pp. 1427-42, 2010.
R. R. Rodrigues, Greer, R. L., Dong, X., DSouza, K. N., Gurung, M., Wu, J. Y., Morgun, A., and Shulzhenko, N., Antibiotic-Induced Alterations in Gut Microbiota Are Associated with Changes in Glucose Metabolism in Healthy Mice., Front Microbiol, vol. 8, p. 2306, 2017.
L. L. Blythe, Mattson, D. E., Lassen, E. D., and Craig, A. M., Antibodies against equine herpesvirus 1 in the cerebrospinal fluid in the horse., The Canadian veterinary journal. La revue vétérinaire canadienne, vol. 26, no. 7, pp. 218-20, 1985.
C. C. Smith, Cebra, C. K., Heidel, J. R., and Stang, B. V., Anti-glucagon-like peptide-1 immunoreactivity in samples of blood and ileum obtained from neonatal and adult alpacas., American journal of veterinary research, vol. 74, no. 11, pp. 1409-14, 2013.
B. W. Neuman, Stein, D. A., Kroeker, A. D., Paulino, A. D., Moulton, H. M., Iversen, P. L., and Buchmeier, M. J., Antisense morpholino-oligomers directed against the 5' end of the genome inhibit coronavirus proliferation and growth., Journal of virology, vol. 78, no. 11, pp. 5891-9, 2004.
G. McClorey, Moulton, H. M., Iversen, P. L., Fletcher, S., and Wilton, S. D., Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD., Gene therapy, vol. 13, no. 19, pp. 1373-81, 2006.
D. Raju, Setlow, P., and Sarker, M. R., Antisense-RNA-mediated decreased synthesis of small, acid-soluble spore proteins leads to decreased resistance of clostridium perfringens spores to moist heat and UV radiation., Applied and environmental microbiology, vol. 73, no. 7, pp. 2048-53, 2007.
R. Burrer, Neuman, B. W., Ting, J. P. C., Stein, D. A., Moulton, H. M., Iversen, P. L., Kuhn, P., and Buchmeier, M. J., Antiviral effects of antisense morpholino oligomers in murine coronavirus infection models., Journal of virology, vol. 81, no. 11, pp. 5637-48, 2007.
J. A. Ferguson, Locke, S. A., Font, W. F., Steinauer, M. L., Marcogliese, D. J., Cojocaru, C. D., and Kent, M. L., Apophallus microsoma N. SP. from chicks infected with metacercariae from coho salmon (Oncorhynchus kisutch) and review of the taxonomy and pathology of the genus Apophallus (Heterophyidae)., The Journal of parasitology, vol. 98, no. 6, pp. 1122-32, 2012.
J. A. Ferguson, Locke, S. A., Font, W. F., Steinauer, M. L., Marcogliese, D. J., Cojocaru, C. D., and Kent, M. L., Apophallus microsoma N. SP. from chicks infected with metacercariae from coho salmon (Oncorhynchus kisutch) and review of the taxonomy and pathology of the genus Apophallus (Heterophyidae)., J Parasitol, vol. 98, no. 6, pp. 1122-32, 2012.
L. E. Bermudez, Parker, A., and Petrofsky, M., Apoptosis of Mycobacterium avium-infected macrophages is mediated by both tumour necrosis factor (TNF) and Fas, and involves the activation of caspases., Clinical and experimental immunology, vol. 116, no. 1, pp. 94-9, 1999.
A. N. Reed, Putman, T., Sullivan, C., and Jin, L., Application of a nanoflare probe specific to a latency associated transcript for isolation of KHV latently infected cells., Virus research, vol. 208, pp. 129-35, 2015.
G. Scherba, Wiemers, J. F., Siegel, A. M., Jin, L., Austin, C. C., Bowman, L., Redeford, B., Johnston, N. A., and Weigel, R. M., Application of a quantitative algorithm to restriction endonuclease analysis of Aujeszky's disease (pseudorabies) virus from a geographically localized outbreak., Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, vol. 11, no. 5, pp. 423-31, 1999.
J. Y. Zhong, Magnusson, K. R., Swarts, M. E., Clendinen, C. A., Reynolds, N. C., and Moffat, S. D., The application of a rodent-based Morris water maze (MWM) protocol to an investigation of age-related differences in human spatial learning., Behav Neurosci, vol. 131, no. 6, pp. 470-482, 2017.
A. L. Michel, Cooper, D., Jooste, J., de Klerk, L. - M., and Jolles, A. E., Approaches towards optimising the gamma interferon assay for diagnosing Mycobacterium bovis infection in African buffalo (Syncerus caffer)., Prev Vet Med, vol. 98, no. 2-3, pp. 142-51, 2011.
P. L. Merrill, Tepper, J., Walster, C. I., Palić, D., Miller-Morgan, T. J., and Johnston, C. J., Aquatic veterinary medicine., The Veterinary record, vol. 160, no. 13, p. 452, 2007.
R. Abes, Arzumanov, A., Moulton, H. M., Abes, S., Ivanova, G., Gait, M. J., Iversen, P., and Lebleu, B., Arginine-rich cell penetrating peptides: design, structure-activity, and applications to alter pre-mRNA splicing by steric-block oligonucleotides., Journal of peptide science : an official publication of the European Peptide Society, vol. 14, no. 4, pp. 455-60, 2008.
N. B. Marshall, Oda, S. K., London, C. A., Moulton, H. M., Iversen, P. L., Kerkvliet, N. I., and Mourich, D. V., Arginine-rich cell-penetrating peptides facilitate delivery of antisense oligomers into murine leukocytes and alter pre-mRNA splicing., Journal of immunological methods, vol. 325, no. 1-2, pp. 114-26, 2007.
H. M. Moulton and Moulton, J. D., Arginine-rich cell-penetrating peptides with uncharged antisense oligomers., Drug discovery today, vol. 9, no. 20, p. 870, 2004.
M. H. Nelson, Stein, D. A., Kroeker, A. D., Hatlevig, S. A., Iversen, P. L., and Moulton, H. M., Arginine-rich peptide conjugation to morpholino oligomers: effects on antisense activity and specificity., Bioconjugate chemistry, vol. 16, no. 4, pp. 959-66, 2005.

Pages