Found 203 results
Author [ Title(Desc)] Type Year
Filters: Author is Luiz E Bermudez  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
J. L. Everman, Danelishvili, L., Flores, L. G., and Bermudez, L. E., MAP1203 Promotes Subspecies Binding and Invasion to Bovine Epithelial Cells., Front Cell Infect Microbiol, vol. 8, p. 217, 2018.
M. S. Lewis, Danelishvili, L., Rose, S. J., and Bermudez, L. E., MAV_4644 Interaction with the Host Cathepsin Z Protects subsp. from Rapid Macrophage Killing., Microorganisms, vol. 7, no. 5, 2019.
L. E. Bermudez, Wagner, D., and Sosnowska, D., Mechanisms of Mycobacterium avium pathogenesis., Archivum immunologiae et therapiae experimentalis, vol. 48, no. 6, pp. 521-7, 2000.
L. E. Bermudez, Kolonoski, P., Wu, M., Aralar, P. A., Inderlied, C. B., and Young, L. S., Mefloquine is active in vitro and in vivo against Mycobacterium avium complex., Antimicrobial agents and chemotherapy, vol. 43, no. 8, pp. 1870-4, 1999.
L. E. Bermudez, Kolonoski, P., Petrofsky, M., Wu, M., Inderlied, C. B., and Young, L. S., Mefloquine, moxifloxacin, and ethambutol are a triple-drug alternative to macrolide-containing regimens for treatment of Mycobacterium avium disease., The Journal of infectious diseases, vol. 187, no. 12, pp. 1977-80, 2003.
L. Babrak, Danelishvili, L., Rose, S. J., and Bermudez, L. E., Microaggregate-associated protein involved in invasion of epithelial cells by Mycobacterium avium subsp. hominissuis., Virulence, vol. 6, no. 7, pp. 694-703, 2015.
J. Early and Bermudez, L. E., Mimicry of the Pathogenic Mycobacterium Vacuole in vitro Elicits the Bacterial Intracellular Phenotype, Including Early-onset Macrophage Cell Death., Infection and immunity, 2011.
C. M. Whipps, Boorom, K., Bermudez, L. E., and Kent, M. L., Molecular characterization of Blastocystis species in Oregon identifies multiple subtypes., Parasitology research, vol. 106, no. 4, pp. 827-32, 2010.
L. S. Young, Gascon, R., Alam, S., and Bermudez, L. E., Monoclonal antibodies for treatment of gram-negative infections., Reviews of infectious diseases, vol. 11 Suppl 7, pp. S1564-71, 1989.
L. S. Young, Bermudez, L. E., and Inderlied, C. B., Mycobacteria and AIDS: treatment, prevention and future prospects., Research in microbiology, vol. 143, no. 4, pp. 420-2, 1992.
L. E. Bermudez and Sangari, F. J., Mycobacterial invasion of epithelial cells., Sub-cellular biochemistry, vol. 33, pp. 231-49, 2000.
S. J. Rose and Bermudez, L. E., Mycobacterium avium biofilm attenuates mononuclear phagocyte function by triggering hyperstimulation and apoptosis during early infection., Infection and immunity, vol. 82, no. 1, pp. 405-12, 2014.
C. B. Inderlied, Kemper, C. A., and Bermudez, L. E., The Mycobacterium avium complex., Clinical microbiology reviews, vol. 6, no. 3, pp. 266-310, 1993.
L. E. Bermudez, Inderlied, C. B., and Young, L. S., Mycobacterium avium complex in AIDS., Current clinical topics in infectious diseases, vol. 12, pp. 257-81, 1992.
F. J. Sangari, Goodman, J., and Bermudez, L. E., Mycobacterium avium enters intestinal epithelial cells through the apical membrane, but not by the basolateral surface, activates small GTPase Rho and, once within epithelial cells, expresses an invasive phenotype., Cellular microbiology, vol. 2, no. 6, pp. 561-8, 2000.
M. McNamara, Danelishvili, L., and Bermudez, L. E., The Mycobacterium avium ESX-5 PPE protein, PPE25-MAV, interacts with an ESAT-6 family Protein, MAV_2921, and localizes to the bacterial surface., Microbial pathogenesis, vol. 52, no. 4, pp. 227-38, 2012.
Y. Yamazaki, Danelishvili, L., Wu, M., Macnab, M., and Bermudez, L. E., Mycobacterium avium genes associated with the ability to form a biofilm., Applied and environmental microbiology, vol. 72, no. 1, pp. 819-25, 2006.
M. J. Harriff, Danelishvili, L., Wu, M., Wilder, C., McNamara, M., Kent, M. L., and Bermudez, L. E., Mycobacterium avium genes MAV_5138 and MAV_3679 are transcriptional regulators that play a role in invasion of epithelial cells, in part by their regulation of CipA, a putative surface protein interacting with host cell signaling pathways., Journal of bacteriology, vol. 191, no. 4, pp. 1132-42, 2009.
R. Tenant and Bermudez, L. E., Mycobacterium avium genes upregulated upon infection of Acanthamoeba castellanii demonstrate a common response to the intracellular environment., Current microbiology, vol. 52, no. 2, pp. 128-33, 2006.
E. C. Miltner and Bermudez, L. E., Mycobacterium avium grown in Acanthamoeba castellanii is protected from the effects of antimicrobials., Antimicrobial agents and chemotherapy, vol. 44, no. 7, pp. 1990-4, 2000.
N. Azouaou, Petrofsky, M., Young, L. S., and Bermudez, L. E., Mycobacterium avium infection in mice is associated with time-related expression of Th1 and Th2 CD4+ T-lymphocyte response., Immunology, vol. 91, no. 3, pp. 414-20, 1997.
F. J. Sangari, Petrofsky, M., and Bermudez, L. E., Mycobacterium avium infection of epithelial cells results in inhibition or delay in the release of interleukin-8 and RANTES., Infection and immunity, vol. 67, no. 10, pp. 5069-75, 1999.
S. Y. Kim, Goodman, J. R., Petrofsky, M., and Bermudez, L. E., Mycobacterium avium infection of gut mucosa in mice associated with late inflammatory response and intestinal cell necrosis., Journal of medical microbiology, vol. 47, no. 8, pp. 725-31, 1998.
D. Wagner, Sangari, F. J., Kim, S., Petrofsky, M., and Bermudez, L. E., Mycobacterium avium infection of macrophages results in progressive suppression of interleukin-12 production in vitro and in vivo., Journal of leukocyte biology, vol. 71, no. 1, pp. 80-8, 2002.

Pages