Found 900 results
Author [ Title(Desc)] Type Year
Filters: First Letter Of Last Name is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
M. Pizarro-Guajardo, Olguín-Araneda, V., Barra-Carrasco, J., Brito-Silva, C., Sarker, M. R., and Paredes-Sabja, D., Characterization of the collagen-like exosporium protein, BclA1, of Clostridium difficile spores., Anaerobe, vol. 25, pp. 18-30, 2014.
S. Marsilio, Pilla, R., Sarawichitr, B., Chow, B., Hill, S. L., Ackermann, M. R., J Estep, S., Lidbury, J. A., Steiner, J. M., and Suchodolski, J. S., Characterization of the fecal microbiome in cats with inflammatory bowel disease or alimentary small cell lymphoma., Sci Rep, vol. 9, no. 1, p. 19208, 2019.
S. Marsilio, Pilla, R., Sarawichitr, B., Chow, B., Hill, S. L., Ackermann, M. R., J Estep, S., Lidbury, J. A., Steiner, J. M., and Suchodolski, J. S., Characterization of the fecal microbiome in cats with inflammatory bowel disease or alimentary small cell lymphoma., Sci Rep, vol. 9, no. 1, p. 19208, 2019.
S. Marsilio, Pilla, R., Sarawichitr, B., Chow, B., Hill, S. L., Ackermann, M. R., J Estep, S., Lidbury, J. A., Steiner, J. M., and Suchodolski, J. S., Characterization of the fecal microbiome in cats with inflammatory bowel disease or alimentary small cell lymphoma., Sci Rep, vol. 9, no. 1, p. 19208, 2019.
W. B. Schmotzer, Hultgren, B. D., Huber, M. J., Watrous, B. J., Riebold, T. W., Wagner, P. C., and Shires, G. M., Chemical involution of the equine parotid salivary gland., Veterinary surgery : VS, vol. 20, no. 2, pp. 128-32, 1991.
W. B. Schmotzer, Hultgren, B. D., Huber, M. J., Watrous, B. J., Riebold, T. W., Wagner, P. C., and Shires, G. M., Chemical involution of the equine parotid salivary gland., Veterinary surgery : VS, vol. 20, no. 2, pp. 128-32, 1991.
D. L. Swenson, Warfield, K. L., Warren, T. K., Lovejoy, C., Hassinger, J. N., Ruthel, G., Blouch, R. E., Moulton, H. M., Weller, D. D., Iversen, P. L., and Bavari, S., Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection., Antimicrobial agents and chemotherapy, vol. 53, no. 5, pp. 2089-99, 2009.
A. Al Fatease, Shah, V., Nguyen, D. X., Cote, B., LeBlanc, N., Rao, D. A., and Alani, A. W. G., Chemosensitization and mitigation of Adriamycin-induced cardiotoxicity using combinational polymeric micelles for co-delivery of quercetin/resveratrol and resveratrol/curcumin in ovarian cancer., Nanomedicine, vol. 19, pp. 39-48, 2019.
J. P. Bannantine, Stamm, W. E., Suchland, R. J., and Rockey, D. D., Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates., Infection and immunity, vol. 66, no. 12, pp. 6017-21, 1998.
J. P. Bannantine, Stamm, W. E., Suchland, R. J., and Rockey, D. D., Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates., Infection and immunity, vol. 66, no. 12, pp. 6017-21, 1998.
J. P. Bannantine, Stamm, W. E., Suchland, R. J., and Rockey, D. D., Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates., Infect Immun, vol. 66, no. 12, pp. 6017-21, 1998.
J. P. Bannantine, Stamm, W. E., Suchland, R. J., and Rockey, D. D., Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates., Infect Immun, vol. 66, no. 12, pp. 6017-21, 1998.
T. Hackstadt, Rockey, D. D., Heinzen, R. A., and Scidmore, M. A., Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane., The EMBO journal, vol. 15, no. 5, pp. 964-77, 1996.
T. Hackstadt, Rockey, D. D., Heinzen, R. A., and Scidmore, M. A., Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane., EMBO J, vol. 15, no. 5, pp. 964-77, 1996.
M. Xia, Suchland, R. J., Bumgarner, R. E., Peng, T., Rockey, D. D., and Stamm, W. E., Chlamydia trachomatis variant with nonfusing inclusions: growth dynamic and host-cell transcriptional response., The Journal of infectious diseases, vol. 192, no. 7, pp. 1229-36, 2005.
M. Xia, Suchland, R. J., Bumgarner, R. E., Peng, T., Rockey, D. D., and Stamm, W. E., Chlamydia trachomatis variant with nonfusing inclusions: growth dynamic and host-cell transcriptional response., The Journal of infectious diseases, vol. 192, no. 7, pp. 1229-36, 2005.
M. Xia, Suchland, R. J., Bumgarner, R. E., Peng, T., Rockey, D. D., and Stamm, W. E., Chlamydia trachomatis variant with nonfusing inclusions: growth dynamic and host-cell transcriptional response., J Infect Dis, vol. 192, no. 7, pp. 1229-36, 2005.
M. Xia, Suchland, R. J., Bumgarner, R. E., Peng, T., Rockey, D. D., and Stamm, W. E., Chlamydia trachomatis variant with nonfusing inclusions: growth dynamic and host-cell transcriptional response., J Infect Dis, vol. 192, no. 7, pp. 1229-36, 2005.
N. Borel, Leonard, C., Slade, J., and Schoborg, R. V., Chlamydial Antibiotic Resistance and Treatment Failure in Veterinary and Human Medicine., Curr Clin Microbiol Rep, vol. 3, pp. 10-18, 2016.
N. Borel, Leonard, C., Slade, J., and Schoborg, R. V., Chlamydial Antibiotic Resistance and Treatment Failure in Veterinary and Human Medicine., Curr Clin Microbiol Rep, vol. 3, pp. 10-18, 2016.
W. J. Brown, Skeiky, Y. A. W., Probst, P., and Rockey, D. D., Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol., Infection and immunity, vol. 70, no. 10, pp. 5860-4, 2002.
W. J. Brown, Skeiky, Y. A. W., Probst, P., and Rockey, D. D., Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol., Infect Immun, vol. 70, no. 10, pp. 5860-4, 2002.
Y. Vengrenyuk, Nishi, H., Long, X., Ouimet, M., Savji, N., Martinez, F. O., Cassella, C. P., Moore, K. J., Ramsey, S. A., Miano, J. M., and Fisher, E. A., Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype., Arterioscler Thromb Vasc Biol, vol. 35, no. 3, pp. 535-46, 2015.
R. J. Suchland, Carrell, S. J., Wang, Y., Hybiske, K., Kim, D. B., Dimond, Z. E., P Hefty, S., and Rockey, D. D., Chromosomal Recombination Targets in Interspecies Lateral Gene Transfer., J Bacteriol, vol. 201, no. 23, 2019.
L. L. Blythe, Schmitz, J. A., Roelke, M., and Skinner, S., Chronic encephalomyelitis caused by canine distemper virus in a Bengal tiger., Journal of the American Veterinary Medical Association, vol. 183, no. 11, pp. 1159-62, 1983.

Pages