Found 451 results
Author [ Title(Asc)] Type Year
Filters: First Letter Of Last Name is P  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
M. Alonso-Hearn, Patel, D., Danelishvili, L., Meunier-Goddik, L., and Bermudez, L. E., The Mycobacterium avium subsp. paratuberculosis MAP3464 gene encodes an oxidoreductase involved in invasion of bovine epithelial cells through the activation of host cell Cdc42., Infection and immunity, vol. 76, no. 1, pp. 170-8, 2008.
M. Alonso-Hearn, Patel, D., Danelishvili, L., Meunier-Goddik, L., and Bermudez, L. E., The Mycobacterium avium subsp. paratuberculosis MAP3464 gene encodes an oxidoreductase involved in invasion of bovine epithelial cells through the activation of host cell Cdc42., Infect Immun, vol. 76, no. 1, pp. 170-8, 2008.
L. Danelishvili, Rojony, R., Carson, K. L., Palmer, A. L., Rose, S. J., and Bermudez, L. E., Mycobacterium avium subsp. hominissuis effector MAVA5_06970 promotes rapid apoptosis in secondary-infected macrophages during cell-to-cell spread., Virulence, vol. 9, no. 1, pp. 1287-1300, 2018.
Y. Li, Miltner, E., Wu, M., Petrofsky, M., and Bermudez, L. E., A Mycobacterium avium PPE gene is associated with the ability of the bacterium to grow in macrophages and virulence in mice., Cellular microbiology, vol. 7, no. 4, pp. 539-48, 2005.
F. J. Sangari, Goodman, J., Petrofsky, M., Kolonoski, P., and Bermudez, L. E., Mycobacterium avium invades the intestinal mucosa primarily by interacting with enterocytes., Infection and immunity, vol. 69, no. 3, pp. 1515-20, 2001.
F. J. Sangari, Parker, A., and Bermudez, L. E., Mycobacterium avium interaction with macrophages and intestinal epithelial cells., Frontiers in bioscience : a journal and virtual library, vol. 4, pp. D582-8, 1999.
D. Wagner, Sangari, F. J., Kim, S., Petrofsky, M., and Bermudez, L. E., Mycobacterium avium infection of macrophages results in progressive suppression of interleukin-12 production in vitro and in vivo., Journal of leukocyte biology, vol. 71, no. 1, pp. 80-8, 2002.
S. Y. Kim, Goodman, J. R., Petrofsky, M., and Bermudez, L. E., Mycobacterium avium infection of gut mucosa in mice associated with late inflammatory response and intestinal cell necrosis., Journal of medical microbiology, vol. 47, no. 8, pp. 725-31, 1998.
F. J. Sangari, Petrofsky, M., and Bermudez, L. E., Mycobacterium avium infection of epithelial cells results in inhibition or delay in the release of interleukin-8 and RANTES., Infection and immunity, vol. 67, no. 10, pp. 5069-75, 1999.
N. Azouaou, Petrofsky, M., Young, L. S., and Bermudez, L. E., Mycobacterium avium infection in mice is associated with time-related expression of Th1 and Th2 CD4+ T-lymphocyte response., Immunology, vol. 91, no. 3, pp. 414-20, 1997.
M. L. Kent, Whipps, C. M., Matthews, J. L., Florio, D., Watral, V., Bishop-Stewart, J. K., Poort, M., and Bermudez, L., Mycobacteriosis in zebrafish (Danio rerio) research facilities., Comp Biochem Physiol C Toxicol Pharmacol, vol. 138, no. 3, pp. 383-90, 2004.
D. Chan, Cohen, J., Naito, J., Mott, K. R., Osorio, N., Jin, L., Fraser, N. W., Jones, C., Wechsler, S. L., and Perng, G. Chuen, A mutant deleted for most of the herpes simplex virus type 1 (HSV-1) UOL gene does not affect the spontaneous reactivation phenotype in rabbits., Journal of neurovirology, vol. 12, no. 1, pp. 5-16, 2006.
C. M. Whipps, W Butler, R., Pourahmad, F., Watral, V. G., and Kent, M. L., Molecular systematics support the revival of Mycobacterium salmoniphilum (ex Ross 1960) sp. nov., nom. rev., a species closely related to Mycobacterium chelonae., International journal of systematic and evolutionary microbiology, vol. 57, no. Pt 11, pp. 2525-31, 2007.
A. Morgun, Shulzhenko, N., Perez-Diez, A., Diniz, R. V. Z., Sanson, G. F., Almeida, D. R., Matzinger, P., and Gerbase-DeLima, M., Molecular profiling improves diagnoses of rejection and infection in transplanted organs., Circulation research, vol. 98, no. 12, pp. e74-83, 2006.
M. J. Poort, Whipps, C. M., Watral, V. G., Font, W. F., and Kent, M. L., Molecular characterization of a Mycobacterium species in non-native poeciliids in Hawaii using DNA sequences., Journal of fish diseases, vol. 29, no. 3, pp. 181-5, 2006.
T. L. Grubb, Schlipf, J. W., Riebold, T. W., Cebra, C. K., Poland, L., Zawadzkas, X., and Mailhot, N., Minimum alveolar concentration of sevoflurane in spontaneously breathing llamas and alpacas., Journal of the American Veterinary Medical Association, vol. 223, no. 8, pp. 1167-9, 2003.
T. L. Grubb, Schlipf, J. W., Riebold, T. W., Cebra, C. K., Poland, L., Zawadzkas, X., and Mailhot, N., Minimum alveolar concentration of desflurane in llamas and alpacas., Veterinary anaesthesia and analgesia, vol. 33, no. 6, pp. 351-5, 2006.
A. Perez-Diez, Morgun, A., and Shulzhenko, N., Microarrays for cancer diagnosis and classification., Advances in experimental medicine and biology, vol. 593, pp. 74-85, 2007.
A. L. Palmer and Dolan, B. P., MHC class I antigen presentation of DRiP-derived peptides from a model antigen is not dependent on the AAA ATPase p97., PloS one, vol. 8, no. 7, p. e67796, 2013.
T. G. Nyland, Blythe, L. L., Pool, R. R., Helphrey, M. G., and O'Brien, T. R., Metrizamide myelography in the horse: clinical, radiographic, and pathologic changes., American journal of veterinary research, vol. 41, no. 2, pp. 204-11, 1980.
L. Jin, Perng, G. - C., Brick, D. J., Naito, J., Nesburn, A. B., Jones, C., and Wechsler, S. L., Methods for detecting the HSV-1 LAT anti-apoptosis activity in virus infected tissue culture cells., Journal of virological methods, vol. 118, no. 1, pp. 9-13, 2004.
S. Tripathi, Pohl, M. O., Zhou, Y., Rodriguez-Frandsen, A., Wang, G., Stein, D. A., Moulton, H. M., DeJesus, P., Che, J., Mulder, L. C. F., Yángüez, E., Andenmatten, D., Pache, L., Manicassamy, B., Albrecht, R. A., Gonzalez, M. G., Nguyen, Q., Brass, A., Elledge, S., White, M., Shapira, S., Hacohen, N., Karlas, A., Meyer, T. F., Shales, M., Gatorano, A., Johnson, J. R., Jang, G., Johnson, T., Verschueren, E., Sanders, D., Krogan, N., Shaw, M., König, R., Stertz, S., García-Sastre, A., and Chanda, S. K., Meta- and Orthogonal Integration of Influenza "OMICs" Data Defines a Role for UBR4 in Virus Budding., Cell Host Microbe, vol. 18, no. 6, pp. 723-35, 2015.
S. Tripathi, Pohl, M. O., Zhou, Y., Rodriguez-Frandsen, A., Wang, G., Stein, D. A., Moulton, H. M., DeJesus, P., Che, J., Mulder, L. C. F., Yángüez, E., Andenmatten, D., Pache, L., Manicassamy, B., Albrecht, R. A., Gonzalez, M. G., Nguyen, Q., Brass, A., Elledge, S., White, M., Shapira, S., Hacohen, N., Karlas, A., Meyer, T. F., Shales, M., Gatorano, A., Johnson, J. R., Jang, G., Johnson, T., Verschueren, E., Sanders, D., Krogan, N., Shaw, M., König, R., Stertz, S., García-Sastre, A., and Chanda, S. K., Meta- and Orthogonal Integration of Influenza "OMICs" Data Defines a Role for UBR4 in Virus Budding., Cell Host Microbe, vol. 18, no. 6, pp. 723-35, 2015.
C. V. Löhr, Polster, U., Kuhnert, P., Karger, A., Rurangirwa, F. R., and Teifke, J. P., Mesenteric Lymphangitis and Sepsis Due to RTX Toxin-Producing Actinobacillus spp in 2 Foals With Hypothyroidism-Dysmaturity Syndrome., Veterinary pathology, vol. 49, no. 4, pp. 592-601, 2012.
C. V. Löhr, Polster, U., Kuhnert, P., Karger, A., Rurangirwa, F. R., and Teifke, J. P., Mesenteric Lymphangitis and Sepsis Due to RTX Toxin-Producing Actinobacillus spp in 2 Foals With Hypothyroidism-Dysmaturity Syndrome., Veterinary pathology, 2011.

Pages