Found 1243 results
Author Title [ Type(Desc)] Year
Journal Article
W. B. Schmotzer, Hultgren, B. D., Huber, M. J., Watrous, B. J., Riebold, T. W., Wagner, P. C., and Shires, G. M., Chemical involution of the equine parotid salivary gland., Veterinary surgery : VS, vol. 20, no. 2, pp. 128-32, 1991.
D. L. Swenson, Warfield, K. L., Warren, T. K., Lovejoy, C., Hassinger, J. N., Ruthel, G., Blouch, R. E., Moulton, H. M., Weller, D. D., Iversen, P. L., and Bavari, S., Chemical modifications of antisense morpholino oligomers enhance their efficacy against Ebola virus infection., Antimicrobial agents and chemotherapy, vol. 53, no. 5, pp. 2089-99, 2009.
F. Debart, Abes, S., Deglane, G., Moulton, H. M., Clair, P., Gait, M. J., Vasseur, J. - J., and Lebleu, B., Chemical modifications to improve the cellular uptake of oligonucleotides., Current topics in medicinal chemistry, vol. 7, no. 7, pp. 727-37, 2007.
P. Dibrov, Dzioba, J., Gosink, K. K., and Häse, C. C., Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae., Antimicrobial agents and chemotherapy, vol. 46, no. 8, pp. 2668-70, 2002.
D. J. Castro, Yu, Z., Löhr, C. V., Pereira, C. B., Giovanini, J. N., Fischer, K. A., Orner, G. A., Dashwood, R. H., and Williams, D. E., Chemoprevention of dibenzo[a,l]pyrene transplacental carcinogenesis in mice born to mothers administered green tea: primary role of caffeine., Carcinogenesis, vol. 29, no. 8, pp. 1581-6, 2008.
A. Al Fatease, Shah, V., Nguyen, D. X., Cote, B., LeBlanc, N., Rao, D. A., and Alani, A. W. G., Chemosensitization and mitigation of Adriamycin-induced cardiotoxicity using combinational polymeric micelles for co-delivery of quercetin/resveratrol and resveratrol/curcumin in ovarian cancer., Nanomedicine, vol. 19, pp. 39-48, 2019.
M. A. Boin, Austin, M. J., and Häse, C. C., Chemotaxis in Vibrio cholerae., FEMS microbiology letters, vol. 239, no. 1, pp. 1-8, 2004.
D. D. Rockey, Grosenbach, D., Hruby, D. E., Peacock, M. G., Heinzen, R. A., and Hackstadt, T., Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion., Molecular microbiology, vol. 24, no. 1, pp. 217-28, 1997.
D. D. Rockey, Grosenbach, D., Hruby, D. E., Peacock, M. G., Heinzen, R. A., and Hackstadt, T., Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion., Mol Microbiol, vol. 24, no. 1, pp. 217-28, 1997.
E. D. Cram, Rockey, D. D., and Dolan, B. P., Chlamydia spp. development is differentially altered by treatment with the LpxC inhibitor LPC-011., BMC Microbiol, vol. 17, no. 1, p. 98, 2017.
J. P. Bannantine, Stamm, W. E., Suchland, R. J., and Rockey, D. D., Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates., Infect Immun, vol. 66, no. 12, pp. 6017-21, 1998.
J. P. Bannantine, Stamm, W. E., Suchland, R. J., and Rockey, D. D., Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates., Infection and immunity, vol. 66, no. 12, pp. 6017-21, 1998.
T. Hackstadt, Rockey, D. D., Heinzen, R. A., and Scidmore, M. A., Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane., EMBO J, vol. 15, no. 5, pp. 964-77, 1996.
T. Hackstadt, Rockey, D. D., Heinzen, R. A., and Scidmore, M. A., Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane., The EMBO journal, vol. 15, no. 5, pp. 964-77, 1996.
M. Xia, Suchland, R. J., Bumgarner, R. E., Peng, T., Rockey, D. D., and Stamm, W. E., Chlamydia trachomatis variant with nonfusing inclusions: growth dynamic and host-cell transcriptional response., J Infect Dis, vol. 192, no. 7, pp. 1229-36, 2005.
M. Xia, Suchland, R. J., Bumgarner, R. E., Peng, T., Rockey, D. D., and Stamm, W. E., Chlamydia trachomatis variant with nonfusing inclusions: growth dynamic and host-cell transcriptional response., The Journal of infectious diseases, vol. 192, no. 7, pp. 1229-36, 2005.
D. D. Rockey, Wang, J., Lei, L., and Zhong, G., Chlamydia vaccine candidates and tools for chlamydial antigen discovery., Expert Rev Vaccines, vol. 8, no. 10, pp. 1365-77, 2009.
D. D. Rockey, Wang, J., Lei, L., and Zhong, G., Chlamydia vaccine candidates and tools for chlamydial antigen discovery., Expert review of vaccines, vol. 8, no. 10, pp. 1365-77, 2009.
N. Borel, Leonard, C., Slade, J., and Schoborg, R. V., Chlamydial Antibiotic Resistance and Treatment Failure in Veterinary and Human Medicine., Curr Clin Microbiol Rep, vol. 3, pp. 10-18, 2016.
W. J. Brown, Skeiky, Y. A. W., Probst, P., and Rockey, D. D., Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol., Infection and immunity, vol. 70, no. 10, pp. 5860-4, 2002.
W. J. Brown, Skeiky, Y. A. W., Probst, P., and Rockey, D. D., Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol., Infect Immun, vol. 70, no. 10, pp. 5860-4, 2002.
D. Alzhanov, Barnes, J., Hruby, D. E., and Rockey, D. D., Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA., BMC Microbiol, vol. 4, p. 24, 2004.
D. Alzhanov, Barnes, J., Hruby, D. E., and Rockey, D. D., Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA., BMC microbiology, vol. 4, p. 24, 2004.
A. W. Biondo and de Morais, H. Autran, Chloride: a quick reference., The Veterinary clinics of North America. Small animal practice, vol. 38, no. 3, pp. 459-65, viii, 2008.
R. J. Suchland, Carrell, S. J., Wang, Y., Hybiske, K., Kim, D. B., Dimond, Z. E., P Hefty, S., and Rockey, D. D., Chromosomal Recombination Targets in Interspecies Lateral Gene Transfer., J Bacteriol, vol. 201, no. 23, 2019.

Pages