Found 14 results
Author Title [ Type(Asc)] Year
Filters: Author is Setlow, Peter  [Clear All Filters]
Journal Article
D. Paredes-Sabja, Setlow, P., and Sarker, M. R., SleC is essential for cortex peptidoglycan hydrolysis during germination of spores of the pathogenic bacterium Clostridium perfringens., Journal of bacteriology, vol. 191, no. 8, pp. 2711-20, 2009.
D. Paredes-Sabja, Sarker, N., Setlow, B., Setlow, P., and Sarker, M. R., Roles of DacB and spm proteins in clostridium perfringens spore resistance to moist heat, chemicals, and UV radiation., Applied and environmental microbiology, vol. 74, no. 12, pp. 3730-8, 2008.
D. Paredes-Sabja, Setlow, P., and Sarker, M. R., Role of GerKB in germination and outgrowth of Clostridium perfringens spores., Applied and environmental microbiology, vol. 75, no. 11, pp. 3813-7, 2009.
D. Paredes-Sabja, Setlow, P., and Sarker, M. R., The protease CspB is essential for initiation of cortex hydrolysis and dipicolinic acid (DPA) release during germination of spores of Clostridium perfringens type A food poisoning isolates., Microbiology (Reading, England), vol. 155, no. Pt 10, pp. 3464-72, 2009.
D. Raju, Waters, M., Setlow, P., and Sarker, M. R., Investigating the role of small, acid-soluble spore proteins (SASPs) in the resistance of Clostridium perfringens spores to heat., BMC microbiology, vol. 6, p. 50, 2006.
D. Paredes-Sabja, Setlow, P., and Sarker, M. R., GerO, a putative Na+/H+-K+ antiporter, is essential for normal germination of spores of the pathogenic bacterium Clostridium perfringens., Journal of bacteriology, vol. 191, no. 12, pp. 3822-31, 2009.
D. Paredes-Sabja, Bond, C., Carman, R. J., Setlow, P., and Sarker, M. R., Germination of spores of Clostridium difficile strains, including isolates from a hospital outbreak of Clostridium difficile-associated disease (CDAD)., Microbiology (Reading, England), vol. 154, no. Pt 8, pp. 2241-50, 2008.
D. Paredes-Sabja, Setlow, P., and Sarker, M. R., Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved., Trends in microbiology, vol. 19, no. 2, pp. 85-94, 2011.
X. Yi, Bond, C., Sarker, M. R., and Setlow, P., Efficient inhibition of germination of coat-deficient bacterial spores by multivalent metal cations, including terbium (Tb³+)., Applied and environmental microbiology, vol. 77, no. 15, pp. 5536-9, 2011.
J. Francisco Leyva-Illades, Setlow, B., Sarker, M. R., and Setlow, P., Effect of a small, acid-soluble spore protein from Clostridium perfringens on the resistance properties of Bacillus subtilis spores., Journal of bacteriology, vol. 189, no. 21, pp. 7927-31, 2007.
D. Paredes-Sabja, J Torres, A., Setlow, P., and Sarker, M. R., Clostridium perfringens spore germination: characterization of germinants and their receptors., Journal of bacteriology, vol. 190, no. 4, pp. 1190-201, 2008.
S. Banawas, Paredes-Sabja, D., Korza, G., Li, Y., Hao, B., Setlow, P., and Sarker, M. R., The Clostridium perfringens germinant receptor protein GerKC is located in the spore inner membrane and is crucial for spore germination., Journal of bacteriology, vol. 195, no. 22, pp. 5084-91, 2013.
D. Paredes-Sabja, Setlow, B., Setlow, P., and Sarker, M. R., Characterization of Clostridium perfringens spores that lack SpoVA proteins and dipicolinic acid., Journal of bacteriology, vol. 190, no. 13, pp. 4648-59, 2008.
D. Raju, Setlow, P., and Sarker, M. R., Antisense-RNA-mediated decreased synthesis of small, acid-soluble spore proteins leads to decreased resistance of clostridium perfringens spores to moist heat and UV radiation., Applied and environmental microbiology, vol. 73, no. 7, pp. 2048-53, 2007.