College of Veterinary Medicine Faculty Interest Summaries 2020

Luiz E. Bermudez

Mycobacterial pathogenesis and new therapies to mycobacterial infection. *Mycobacterium tuberculosis*, *Mycobacterium avium*, *Mycobacterium abscessus* and *Mycobacterium avium* subsp *paratuberculosis*. Infection of the human and animal host interaction with mucosal surface, survival mechanism in the host, biofilm and its role in disease. Macrophages, Natural Killer cells and T lymphocyte participation in host defense against mycobacterial infection.

Mark R. Ackermann

My research has emphasized respiratory disease and most noteably infections of human strains of respiratory syncytial virus (RSV) infection in newborn lambs as a model for human infants. There are no vaccines or currently effective therapies for RSV despite the fact that nearly everyone becomes infected with RSV and that it is the leading cause of hospitalization for viral pneumonia in human infants. For the last 15 years, we have characterized the kinetics of the development of clinical signs, lesions and viral parameters as well as adaptive and innate immune responses with funding from the USDA and NIH. For the last 7 years we have assessed various novel oral and nebulized therapies against RSV in collaboration with pharmaceutical and biotechnology companies as well as our own therapeutic approaches. An area of applied research is the pathology of inflammatory bowel disease.

Breanna Beechler

Research Focus: I study ecophysiology in wildlife and domestic animals, in the context of one health. In the summer of 2020-21 I will have several research projects undergraduates may get involved in listed below.

- 1) Work with a graduate student investigating the effects of mercury and PDBE's on sea lion physiology. This project will involve developing laboratory assays and working with samples collected and stored from spring.
- 2) Investigate the microbial communities of walrus guts, with samples collected from Alaska. This project will involve primarily working with already processed sequence data and comparing microbiome composition to diet and other variables.
- 3) Participate in work occurring on a project to understand how parasites and microbes transmit on a host network of bighorn sheep. This project may involve limited fieldwork.
- 4) Investigate the spatial distribution of strains of foot and mouth disease across Kruger National Park in African buffalo. This would involve travel to South Africa and the student would be responsible for their own airfare.
- 5) Investigate antimicrobial resistance spread on dairy farms in Costa Rica. This would involve travel to Costa Rica, and the student would be responsible for their own airfare. Preference is given to BHS or MB undergraduates.

Rob Bildfell

The majority of my research efforts are in the form of pathology-related support services for my colleagues, ranging from projects involving the pathogenesis of neoplasia to virulence mechanisms of *Mycobacterium spp*. I have a strong interest in diseases of wildlife and exotic animal species, as well as diseases of public health significance such as cryptococcosis.

Chris Cebra

Dr. Chris Cebra main lines of inquiry involve energy metabolism and gastrointestinal disorders. Regarding energy metabolism, he has primarily investigated the diabetes-like characteristics of llamas and alpacas, but has completed projects on cattle and horses as well. Regarding gastrointestinal diseases, he has concentrated on causes of colic, parasitic disorders, and other enteritides of camelids. He has also initiated or collaborated on projects in a number of other areas relevant to large animal internal medicine including equine and camelid peritoneal fluid analysis, diagnostic imaging, infectious diseases, and immunology.

Patrick Chappell

Work in my lab broadly focuses on basic mechanisms underlying endocrine control of reproduction, exploring the role of the molecular circadian clock in the brain's timing of reproduction in female mammals, and investigating how circadian disruption may initiate hormone-dependent cancers. Current projects include

neuronal proteomics to determine neurosecretory factors required for bone remodeling and metabolism, and cellular and molecular mechanisms underlying estrogen positive and negative feedback required for fertility.

Lia Danelishvili

Dr. Lia Danelishvili's research is mainly focused on study the mechanisms of *Mycobacterium tuberculosis* pathogenesis. Dr. Danelishvili's research identifies and characterizes virulence genes and proteins that are required for the early events of macrophage infection, survival and cell-to-cell spread. She studies the molecular mechanisms of the pathogen-host interaction and the associated cellular processes, such as apoptosis, autophagy and necrosis. The multidisciplinary approaches employing bacterial genetics, high throughput screening libraries, gene knockout systems, cell biology, high-resolution microscopy, bioinformatics and mass-spectrometric sequencing are used in the laboratory.

Helio De Morais

My focus is on vector-borne and emerging infectious disease of dogs and cats.

Brian Dolan

Research in my lab is focused on two main areas. The first is the biology of antigen presentation, the process by which the cells of the body alert the adaptive immune system to the presence of intracellular pathogens, such as viruses, or oncogenic transformation. We are trying to determine which cellular pathways are necessary to successfully present the foreign peptide on major histocompatibility complex class I (MHC I) proteins at the cell surface, which serve to flag down disease specific cytotoxic T cells. We are also interested in studying immune responses in wild animal populations as it relates to disease spread.

Charles Estill

Dr. Estill is a Theriogenologist in the Department of Clinical Sciences. Research areas of interest include corpus luteum physiology and control, nutritional influences on reproduction, and ontogeny of sexual development. Current projects include collaboration on studies of "A ram model of neuroendocrine determinants of sexual orientation" and "Role of Peroxisome Proliferator-Activated Receptor gamma on prevention/cure of Mastitis".

Jean Hall

My research is concerned with how nutrition affects immunity. I am interested in nutrigenomic technology, or the study of how nutraceuticals affect the expression of genes involved in the immune response. My projects involve sheep and cows supplemented with selenium and its effects on immune responses, animal health, and animal production. In particular, we are interested in using selenium as a fertilizer to enhance forages fed to ruminants. I am also interested in the health benefits of dietary n-3 fatty acids and antioxidants in geriatric dog and cat foods. We are currently investigating these supplements in renoprotective foods used to slow the progression of chronic kidney disease in dogs and cats. In conjunction, we are assessing novel renal biomarkers used for monitoring disease progression and therapeutic interventions.

Claudia Hase

The genus *Vibrio* consists of a group of Gram-negative bacteria that naturally inhabitant aquatic environments worldwide. Among this diverse group of microorganisms are a few human pathogens, namely *Vibrio cholerae* and *Vibrio parahaemolyticus*. In addition, our lab studies some *Vibrio* species that cause disease in aquaculture (*Vibrio tubiashii*) and corals (*Vibrio coralliilyticus*). We are applying various modern molecular techniques to better-understand the virulence properties and environmental survival strategies of these pathogens. In addition, we are developing detection assays that can be used in aquaculture facilities to reduce the economic impact of vibriosis.

Michael Huber

Research projects included surgical manipulation of endometrial cups in mares to manage infertility associated with pregnancy loss, and the impact of bone fragments on joint health. Focusing on some innovative ideas for limiting reproduction in BLM and Tribal horse and burro populations and development of an instrument to facilitate a surgical procedure.

Ling Jin

My lab is interested in understanding of the mechanism of viral diseases and virus evolution. Understanding the mechanism of herpesvirus latency and reactivation is the main focus of research in my laboratory. My lab uses different herpesviruses to study the mechanism of herpes virus latency-reactivation cycles, the pathogenesis of herpesviruses, such as Herpes Simplex Virus 1 (HSV-1), Koi herpesvirus (KHV) and other animal herpes viruses. Currently, we have research projects on investigation of chromatin modification inhibitors as drugs against herpesvirus reactivation from latency.

Jennifer Johns

Research in our lab focuses on several areas:

- 1) Translational research utilizing mesenchymal stem cells (MSCs). We are currently evaluating:
- a) How MSCs alter the bone marrow microenvironment and local immune response in canine osteosarcoma (a common bone cancer of dogs), and the resulting impact on tumor progression;
- b) The role of MSCs in modulating the host immune response to infectious diseases, particularly bacterial infections, in veterinary species.
- 2) Research on tick-borne rickettsial infections, including granulocytic anaplasmosis and related obligate intracellular bacterial infections.
- 3) Clinical research for veterinary diagnostic testing, with an emphasis on laboratory animal and exotic species, and hematopoietic disorders in domestic animals.

Anna Jolles

Dr. Anna Jolles is a disease ecologist and epidemiologist at Oregon State University, where she has appointments in the College of Veterinary Medicine and the Department of Zoology. The Jolles lab studies the ecology and eco-immunology of infectious diseases in wild mammals. Current study systems include infectious diseases of African buffalo, feline immunodeficiency virus in African lions and Hanta virus in small mammals in Oregon. We collaborate with Dolan's group on comparative immunology across a broad range of mammal species, and with Clint Epps (OSU Fisheries & Wildlife) on pneumonia in desert bighorn sheep.

Michael Kent

Dr. Kent's research focuses on diseases of fishes and parasitology. Currently he is leading projects investigating diseases of importance to zebrafish in research facilities as this fish is now a very important model in biomedical research. Two groups of pathogens that he is studying are mycobacteria and microsporidia that infect zebrafish. He also is investigating diseases of importance in wild salmonid fishes, and presently is studying multiple pathogens associated with pre-spawning mortality in Chinook salmon.

Nicole LeBlanc

I focus my research in veterinary cardiology on the application of three-dimensional cardiac imaging to improve diagnostic utility of non-invasive cardiac assessment. Another research focus involves the pharmacologic assessment of transdermal drug applications for feline patients. I also investigate the efficacy of arrhythmia monitoring with noninvasive devices, as well as interventional approaches to both acquired and congenital heart disease.

Christiane Löhr

My research focuses on the molecular pathology as it applies to a wide range of diseases especially carcinogenesis, cancer prevention and treatment and infectious diseases. As a board certified anatomic veterinary pathologist with an appointment in the Veterinary Diagnostic Laboratory I encounter new or poorly understood disease conditions with regularity. Such cases provide excellent opportunities to identify specific, potentially novel, causes and mechanisms of disease processes. Much of my research is conducted in collaboration with colleagues in the College, on campus and outside the University. I find it very rewarding to provide critical input and data to large projects and to contribute to the training of researchers at all levels.

Kathy Magnusson

My laboratory is interested in determining the causes of memory decline during aging and determining the early pathological changes that lead to Alzheimer's disease, with an aim toward designing interventions that can

prevent these problems. We will be testing young and old human subjects in multiple cognitive tasks in order to examine the impacts of previous military service or multivitamin/multiminerals on cognitive aging. We will also be using brain slice electrophysiology to test the effects of early treatment with anti-inflammatory compounds on a mouse model of Alzheimer's disease.

Erica McKenzie

Dr. McKenzie is a specialist in large animal medicine and sports medicine and rehabilitation with research interests related to exercise physiology, muscle function, exercise performance and exercise-related disease. Dr. McKenzie also has a strong interest in colloids and their use in clinically diseased patients.

Jan Medlock

My research interests are in infectious diseases and ecology, using my background as an applied mathematician. I am currently working on a variety of subjects, from more theoretical work on dispersal of organisms to more practical projects on influenza, dengue, and African sleeping sickness. I am also interested in the application of mathematics and statistics to biology in general: I have recently begun working with Dr. Shay Bracha to analyze large amounts of genomics and proteomics data on canine cancers.

Kirk Miller

Dr. Kirk Miller is certified in Canine and Feline Practice through the American Board of Veterinary Practitioners. He was in private small animal general practice for more than 12 years before joining the faculty at OSU. Dr. Miller is a Clinical Instructor and teaches the Small Animal Primary Care rotation, which takes place at the Oregon Humane Society in Portland. His current research projects include looking at the natural incidence of dirofilaria immitis in dogs in the northern Willamette Valley and another project evaluating a novel spay technique in cats.

Tim Miller-Morgan

Dr. Tim Miller-Morgan is and extension veterinarian focusing on aquatic species and the ornamental fish industry. He leads the Oregon Sea Grant Aquatic Animal Health Program, which provides the ornamental fish industry, aquatic research laboratories, and public aquaria with cutting-edge, scientifically based, conservation minded disease management techniques, consultation and training. Our research focus is on applied research aimed at current and emerging animal health issues generally associated with the management of wild-caught ornamental fish species and the management of disease throughout the chain of custody from the collector/farmer to the end consumer the ornamental fish hobbyists.

Milan Milovancev

My research topics can be broadly categorized as (1) cancer related or (2) clinical challenges in soft tissue surgery. My cancer related research centers around improving our understanding of the biologic behavior of canine sarcomas (e.g. soft tissue sarcomas, oral fibrosarcomas, and osteosarcomas) as it relates to development of novel diagnostic, prognostic, and therapeutic methods. The research I perform related to clinical challenges in soft tissue surgery is generated from specific problems encountered during my clinical treatment of patients. These include development of novel minimally invasive surgical techniques, evidence-based evaluations of different surgical methods, and case-based reports.

Hong Moulton

Morpholino oligomers are a class of steric-blocking antisense molecules that have been widely used to knock down gene expression, modify pre-mRNA splicing or inhibit miRNA maturation and activity. Injection of Morpholinos into single-celled embryos of many creatures results in specific knockdown of targeted genes with little toxicity. Morpholino oligomers have revolutionary potential for treatment of a broad range of human diseases, including viral, bacterial, age-related and genetic diseases, but they suffer from poor delivery into cells. My long term research interest has been in inventing and improving methods for enhancing *in vivo* delivery of Morpholinos in a tissue-specific manner for a giving disease by chemically modifying and/or formulating Morpholinos. My current research is 1) to develop and validate a high throughput *in vivo* model to assess the efficacy and toxicity of intracellular delivery methods for steric-blocking antisense oligos, and 2) to investigate how host factors affect influenza viral infection using the Morpholino-mediated gene knockdown approach.

Kathy O'Reilly

1). Development of assays for diagnosis and epidemiology of important veterinary and zoonotic diseases. (Prefer MS students only).

Manoj Pastey

Dr. Pastey's laboratory is conducting research work on the pathogenesis of influenza, HIV, and respiratory syncytial virus (RSV) and developing a new diagnostic method to detect Dengue virus, Bovine Herpes virus, and sexually transmitted infections in clinical samples.

HIV Research Study: Our laboratory is testing a poly herbal vaginal microbicide named "BASANT" that has been shown to inhibit a wide range of sexually transmitted pathogens including HIV. Preliminary studies have also shown safety and acceptability in Phase I (acceptability and toxicity study) human trials in India. Therefore, the next step is to verify the effectiveness of the BASANT in preventing HIV transmission *in vivo*. We are also working on a novel HIV protein that is required for replication in T cells. HIV sequestration in the CNS and the failure of antiretroviral drugs to penetrate through blood-brain barrier to eliminate latent CNS reservoir continues to be a major road block in AIDS therapy. Therefore, we are developing Nanotechnology based delivery systems to target the virus within different tissue compartments.

RSV Research Study: Respiratory Syncytial Virus (RSV) is a leading cause of bronchopneumonia in infants and the elderly. There are no vaccines or effective treatment available. Knowledge of viral and host protein interactions is important for better understanding of the viral pathogenesis and may lead to development of novel therapeutic drugs. In our lab, we have shown that Respiratory Syncytial Virus Matrix (M) protein interacts with cellular adaptor protein complex (AP)-3 and its medium (μ) subunit. We are also looking into the role played by Myeloid cell leukemia-1 (MCL-1), an anti-apoptotic member of the B-cell lymphoma-2 (Bcl-2) family, in Respiratory Syncytial virus pathogenesis.

New Diagnostic method: We are developing a new rapid diagnostic method to detect dengue virus, bovine herpes virus, and sexually transmitted infections at Point-of-Care within 30 mins at room temperature using recombinase polymerase amplification (RPA) technology without the need for sophisticated equipment.

Sreekanth Puttachary

Even after a century of research to find a cure epilepsy still remains a disease that is not well understood. Dr. Sreekanth Puttachary's lab is focused on investigating the effect of drugs that target the endocannabinoid system (such as Cannabidiol) administered during epileptogenesis to validate their short-term and long-term impact on the disease progression. In simple terms, seizures are just the symptoms/manifestation of a disease referred to as epilepsy. People of all ages, gender, socio-economic background and demography are susceptible to this disease. More than 2.9 million people in the US suffer from epilepsy.

Stephen Ramsev

My lab's research focus is on computational biology and bioinformatics. We currently have projects in the areas of precision medicine (using machine-learning to predict whether or not a tumor will respond to chemotherapy), artificial intelligence (building a computational system that analyzes biomedical knowledge graphs to identify new potential therapeutic approaches for diseases), applied bioinformatics (analyzing transcriptome data from a study of atherosclerosis and genomics data from a study of genetic recombination in chlamydia) and human genetics (developing machine learning-based tools for identifying functional noncoding human genetic variants).

Dan Rockey

The Rockey laboratory focuses on chlamydial pathogens of humans and animals. The importance of these agents stretches from human sexually transmitted infections and trachoma, through serious diseases of sheep, birds, and koala bears. There are also serious issues with zoonoses associated with some species. Many aspects of basic biology are similar among these different chlamydial pathogens, and therefore, our work with one infection is generally relevant to other diseases as well. Our research approach exploits cell culture-based and genomics-based analyses and we work to keep our investigations in line with clinically important issues faces by medical doctors, veterinarians, and their patients.

Justin Sanders

My research is focused on host-parasite interactions and the impacts of ecological and evolutionary factors on these interactions. Current projects include:1. Production of monoclonal antibodies that recognize a number of zebrafish cytokines and characterization of the zebrafish immune response, 2. Development and characterization of an elevated temperature zebrafish model, primarily for the study of the apicomplexan parasite, *Toxoplasma gondii*, 3. Improvement of diagnostic techniques for the detection of important veterinary parasites such as *Giardia intestinalis* and the liver fluke, *Fasciola hepatica*, 4. Identification and characterization of the transmission dynamics of aquatic pathogens. This work is being performed with salmonid fishes in the wild as well as with laboratory zebrafish in order to determine the factors involved in prespawn mortality of salmonids and to guide diagnostic efforts aimed at improving the health of zebrafish in laboratory fish colonies.

Mahufzur Sarker

The long-term goal of my research program is to develop strategies to inactivate *Clostridium* spores and to control *Clostridium*-mediated diseases. We mainly focus our work on spores of *C. perfringens* (*Cp*) causing *Cp* food poisoning, which currently ranks as the third most commonly reported food-borne disease in the USA. *Cp* also causes non-food-borne gastrointestinal (GI) diseases in humans and GI diseases in domestic animals. Specifically, we investigate the molecular mechanisms of *Cp*: i) spore heat resistance; ii) spore germination; iii) spore-host interactions; and iv) spore inactivation.

Carla Schubiger

I am located at the Hatfield Marine Science Center and interested in bacteria-host interactions, bacterial diseases of marine invertebrates and fish, and alternative treatment options such as probiotics. Student housing is available at the Hatfield campus and students can be fully invested in all ongoing projects or come up with their own questions and small projects. Ongoing projects involve field collection of sea star skin swabs, sampling of water and rock fish in and around Newport, and participation in our oyster studies (including mentored data analysis). Microbiology skills preferred but not required, however students might need to take biosafety trainings prior to starting their projects.

Katherine Scollan

My research in the field of veterinary cardiology is focused on three-dimensional imaging of the heart including 3D echocardiography and computed tomography (CT). I am investigating the use of these imaging modalities to assess size and function of the cardiac chambers in normal and diseased hearts. In addition, I perform research in pharmacokinetics and efficacy of antiarrhythmic medications used in dogs and have an interest in the congenital cardiac diseases of camelids.

Stacy Semevelos

Her research focuses on comparative orthopaedics, particularly postnatal cartilage development and osteochondrosis in horses. She has discovered molecular expression changes in osteochondrosis and has explored the quantitative and spatial alterations of matrix molecules, growth factors, and cell-to-cell signaling in this important disease. In addition, she has discovered age-related changes in gene and protein expression patterns of matrix molecules, growth factors and paracrine factors in articular cartilage of normal growing horses throughout postnatal development. She has also investigated musculoskeletal disorders of llamas and alpacas, using molecular, biochemical, and histological techniques to evaluate suspensory apparatus breakdown in these species.

Natalia Shulzhenko

The Shulzenko lab is interested in understanding how cells of the immune system communicate with other host systems and the resident microorganisms (microbiota) in complex organisms in health and disease. This coexistence is beneficial for both sides but has to be tightly regulated in order to prevent disease development. In order to disclose the mechanisms of these physiological and associated pathological processes, the lab uses a systems approach and analyzes host and microbiota simultaneously. This is done through host transcriptome profiling and global microbiome analysis by next generation sequencing to identify the key regulators of the process. These findings are further validated by directed perturbations of host and microbiota using gnotobiotic mice, i.e. those colonized with defined microbiota. Lab's recent work in chronic enteropathy of immunodeficient

hosts (human and mouse) and in type 2 diabetes focuses on finding microbiota members that can be harmful or beneficial for these diseases.

Sean Spagnoli

Sean Spagnoli engages in collaborative zebrafish research with individuals throughout the country. His own work involves improving the zebrafish as a model for biomedical research by exploring current biosecurity and hygiene standards and practices with regard to subclinical infectious disease and its effects on various experimental techniques.

Susanne Stieger-Vanegas

My research interests focus broadly in computed tomography and ultrasound of gastrointestinal, complex cardiac and musculoskeletal disease in dogs and New World Camelids. My interest not only includes the CT imaging of clinical patients, but establishing new imaging protocols to improve imaging of diseased veterinary patients using CT. Currently I have a focus in cats with lung disease, dogs and New World camelids with gastrointestinal and cardiac disease. In addition, I have a strong interest in understanding if additional techniques such as three-dimensional CT can improve the accuracy reading CT studies in evaluators less experienced reading CT studies. Furthermore, I am also interested in establishing new techniques such as elastography to evaluate patients with musculoskeletal disease. Elastography is a relative new technique used in human patients with injuries of the soft tissues and has in human patients so far predominantly been used to evaluate patients with suspected breast cancer. Current ongoing funded projects include CT of the gastrointestinal tract of dogs and New World Camelids with enteropathy, cardiac-gated CT of New World camelids with complex cardiac abnormalities, evaluation of the healthy and diseased supraspinatus tendon in dogs using ultrasound and MRI. In addition, I am involved in a dental study performing tooth root ablations of the tooth bud of the last maxillary molars (wisdom teeth in humans) using pigs as a model for future studies in human patients.

Sue Tornquist

My areas of research include hematology, metabolic disease and infectious diseases of camelids and use of immunocytochemistry in diagnosis and prognosis of neoplasia.

Jennifer Warnock

I am a Small Animal Surgeon with a practice focus on orthopaedic surgery. My major area of basic science research is on *in vitro* meniscal tissue engineering, using waste tissue obtained during clinical arthroscopy. Meniscal injury and deficiency is a major cause of pain, disability and irreversible osteoarthritis in dogs and humans. As the menisci have minimal to absent healing responses, creating autologous fibrocartilages *in vitro* through tissue engineering may be a viable strategy for addressing the meniscal deficient stifle or knee. My current work has focused on creating fibrocartilage-like tissue from synovial and meniscal cells cultured from clinical patients in need of engineered stifle tissues. Specifically, my lab has synthesized autologous, scaffold free, tensioned neotissues, to avoid the complications seen with use of synthetic, allogenous, and xenogenic scaffolds in meniscal tissue engineering applications. My clinical research focuses on minimally invasive surgery and validation of surgical techniques. I have a long-term goal of bringing discoveries made in my laboratory (following efficacy and safety analysis) to the hospital to benefit my patients.

Katja Zellmer

My general research area is the pathophysiology and treatment of osteoarthritis – especially in horses. More specifically, we are currently investigating different routes of administration of the drug tiludronate, which is a bisphosphonate that decreases bone breakdown. This drug is exciting, as it is the 1st time that veterinarians are trying to affect the subchondral bone pathology in the development of osteoarthritis! Another area of research is the use of nanocarriers for the delivery of medication, gene therapy and interfering RNAs into osteoarthritic joints. Further, I am collaborating in the investigation into signaling changes that may be responsible for the development of osteochondrosis (a developmental joint disease) in foals, as well as in the use of synovial-derived cells for bioengineering of meniscal replacements in dogs. In the future, I am hoping that we will determine whether synovial-derived mesenchymal stem cells are of benefit in the treatment of osteoarthritis in horses.