TitleDevelopment of monoclonal antibody-based assays for the detection of Vibrio tubiashii zinc-metalloprotease (VtpA).
Publication TypeJournal Article
Year of Publication2013
AuthorsGharaibeh, DN, Biel, FM, Häse, CC
JournalJournal of microbiological methods
Volume94
Issue2
Pagination125-32
Date Published2013 Aug
Abstract

Vibrio tubiashii has been linked to disease outbreaks in molluscan species, including oysters, geoducks, and clams. In particular, oyster hatcheries in the Pacific Northwest have been plagued by intermittent vibriosis since 2006. Accurate detection of vibrios, including V. tubiashii, is critical to the hatcheries in order to allow for rapid remediation efforts. The current methods for detection of Vibrio spp. are not ideal for use at the hatchery. Plating samples require time and is not sensitive to extracelluar pathogenic products, such as the secreted zinc-metalloprotease, VtpA. Other sensitive methods to detect bacteria, such as qPCR, require a high level of laboratory skills and expensive supplies that are prohibitive for use at hatchery sites. Thus, hatcheries would benefit from a sensitive, simple method to detect V. tubiashii and its secreted toxin. Here, we describe the development of two inexpensive and highly specific tests for the shellfish-toxic zinc-metalloprotease secreted by V. tubiashii: enzyme-linked immunoassays (ELISA) and a lateral flow immunoassay (dipstick assay). Both technologies rely on a set of monoclonal antibodies used in a sandwich format, with the capture antibody recognizing a different epitope than the detection antibody on the mature VtpA protein. Both assays are quantitative and give colorimetric readouts. The sandwich ELISA was sensitive when VtpA was diluted into PBS, but was markedly less sensitive in conditions that correlate with the environment of hatchery-derived samples, such as in the presence of seawater, algae, or oyster larvae. In contrast, the dipstick assay remained very sensitive in the presence of these contaminants, is less work-intensive, and much more rapid, making this format the preferred assay method for detecting VtpA on site in a hatchery or environmental setting.

DOI10.1016/j.mimet.2013.05.009