Title | The Mycobacterium avium ESX-5 PPE protein, PPE25-MAV, interacts with an ESAT-6 family Protein, MAV_2921, and localizes to the bacterial surface. |
Publication Type | Journal Article |
Year of Publication | 2012 |
Authors | McNamara, M, Danelishvili, L, Bermudez, LE |
Journal | Microbial pathogenesis |
Volume | 52 |
Issue | 4 |
Pagination | 227-38 |
Date Published | 2012 Apr |
Keywords | Protein Transport |
Abstract | Previous research has demonstrated that inactivation of the Mycobacterium avium gene, PPE25-MAV (MAV_2928), leads to a significant attenuation of virulence in both in vitro and in vivo models. PPE25-MAV encodes for a PPE family protein, a family from which many members have been implicated in both bacterial virulence and host immune recognition. Recent research has shown that many PPE family proteins are exported by a specialized Type VII secretion system in mycobacteria. In this context, the mechanisms of PPE25-MAV in M. avium pathogenesis were investigated. A mycobacterial 2-hybrid system was used to perform a directed search for M. avium proteins that interact directly with PPE25-MAV. An interaction was observed between PPE25-MAV and the ESAT-6 family protein, MAV_2921, and was further defined by 2-hybrid analysis of truncated PPE25-MAV, and confirmed by co-immunoprecipitation. Localization of the PPE25-MAV protein was analyzed in Mycobacterium smegmatis expressing the recombinant protein and a significant percentage of PPE25-MAV was shown to be exposed at the bacterial surface by surface biotinylation and trypsin protection assays. Finally, transcriptional analysis of PPE25-MAV and its associated operon suggested that nutrient limitation, a condition which occurs in the phagosome, plays a role in regulating expression of the PPE25-MAV gene. |