TitleStress up-regulates oxidative burst in juvenile Chinook salmon leukocytes.
Publication TypeJournal Article
Year of Publication2018
AuthorsHerron, CL, Cogliati, KM, Dolan, BP, Munakata, A, Schreck, CB
JournalFish Shellfish Immunol
Volume80
Pagination655-659
Date Published2018 Sep
ISSN1095-9947
KeywordsAnimals, Hydrocortisone, Leukocytes, Respiratory Burst, Salmon, Stress, Physiological
Abstract

When fish perceive stressful scenarios, their hypothalamus-pituitary-interrenal axis is activated resulting in the release of corticotropin releasing hormone, adrenocorticotropic hormone (ACTH), and finally cortisol. The physiologic stress response of fish has most often been linked to the reduced performance of the immune system, with a few exceptions where the immune system is activated. In this report, we tested the hypothesis that oxidative burst activity levels in juvenile Chinook salmon (Oncorhynchus tshawytscha) are altered when the fish is presented with a stressor. Fish were subjected to a stressor for 3 h and then allowed to recover for 20 h following the stressor. Plasma and spleens were collected from euthanized fish before the stressor, at the end of a 3 h stressor, and 23 h after the start of the experiment. Plasma was held at -80 °C until cortisol radioimmunoassay analysis was performed to confirm stress. Spleens were held in Dulbecco's Modified Eagle Medium overnight and analyzed the day following collection. Oxidative burst activity was measured in splenic leukocytes after being stimulated with phorbol 12-myristate 13-acetate. We found a significant increase in activated oxidative burst from fish subjected to the stressor as compared to unstressed fish. Speculation is given to ACTH being the leukocyte priming agent in this experiment rather than the cortisol itself.

DOI10.1016/j.fsi.2018.06.038
Alternate JournalFish Shellfish Immunol
PubMed ID29935340