Found 1412 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P. Dibrov, Dzioba, J., Gosink, K. K., and Häse, C. C., Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae., Antimicrobial agents and chemotherapy, vol. 46, no. 8, pp. 2668-70, 2002.
D. J. Castro, Yu, Z., Löhr, C. V., Pereira, C. B., Giovanini, J. N., Fischer, K. A., Orner, G. A., Dashwood, R. H., and Williams, D. E., Chemoprevention of dibenzo[a,l]pyrene transplacental carcinogenesis in mice born to mothers administered green tea: primary role of caffeine., Carcinogenesis, vol. 29, no. 8, pp. 1581-6, 2008.
M. A. Boin, Austin, M. J., and Häse, C. C., Chemotaxis in Vibrio cholerae., FEMS microbiology letters, vol. 239, no. 1, pp. 1-8, 2004.
S. B. Gustafson, Fulkerson, P., Bildfell, R. J., Aguilera, L., and Hazzard, T. M., Chitosan dressing provides hemostasis in swine femoral arterial injury model., Prehospital emergency care : official journal of the National Association of EMS Physicians and the National Association of State EMS Directors, vol. 11, no. 2, pp. 172-8, 2007.
D. D. Rockey, Grosenbach, D., Hruby, D. E., Peacock, M. G., Heinzen, R. A., and Hackstadt, T., Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion., Molecular microbiology, vol. 24, no. 1, pp. 217-28, 1997.
J. P. Bannantine, Stamm, W. E., Suchland, R. J., and Rockey, D. D., Chlamydia trachomatis IncA is localized to the inclusion membrane and is recognized by antisera from infected humans and primates., Infection and immunity, vol. 66, no. 12, pp. 6017-21, 1998.
T. Hackstadt, Rockey, D. D., Heinzen, R. A., and Scidmore, M. A., Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane., The EMBO journal, vol. 15, no. 5, pp. 964-77, 1996.
M. Xia, Suchland, R. J., Bumgarner, R. E., Peng, T., Rockey, D. D., and Stamm, W. E., Chlamydia trachomatis variant with nonfusing inclusions: growth dynamic and host-cell transcriptional response., The Journal of infectious diseases, vol. 192, no. 7, pp. 1229-36, 2005.
D. D. Rockey, Wang, J., Lei, L., and Zhong, G., Chlamydia vaccine candidates and tools for chlamydial antigen discovery., Expert review of vaccines, vol. 8, no. 10, pp. 1365-77, 2009.
W. J. Brown, Skeiky, Y. A. W., Probst, P., and Rockey, D. D., Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol., Infection and immunity, vol. 70, no. 10, pp. 5860-4, 2002.
D. Alzhanov, Barnes, J., Hruby, D. E., and Rockey, D. D., Chlamydial development is blocked in host cells transfected with Chlamydophila caviae incA., BMC microbiology, vol. 4, p. 24, 2004.
A. W. Biondo and de Morais, H. Autran, Chloride: a quick reference., The Veterinary clinics of North America. Small animal practice, vol. 38, no. 3, pp. 459-65, viii, 2008.
C. Toulouse, Häse, C. C., and Steuber, J., Chloroform-free permeabilization for improved detection of β-galactosidase activity in Vibrio cholerae., J Microbiol Methods, vol. 137, pp. 1-2, 2017.
L. L. Blythe, Schmitz, J. A., Roelke, M., and Skinner, S., Chronic encephalomyelitis caused by canine distemper virus in a Bengal tiger., Journal of the American Veterinary Medical Association, vol. 183, no. 11, pp. 1159-62, 1983.
L. L. Blythe and Craig, A. M., A chronic in vivo liver perfusion technique in ruminants., Veterinary and human toxicology, vol. 28, no. 3, pp. 201-4, 1986.
M. McDougall, Choi, J., Magnusson, K. R., Truong, L., Tanguay, R., and Traber, M., Chronic vitamin E deficiency impairs cognitive function in adult zebrafish via dysregulation of brain metabolism due to redox-mediated mechanisms. , Free Rad. Biol. Med. , 2017.
K. M. Lebold, Löhr, C. V., Barton, C. L., Miller, G. W., Labut, E. M., Tanguay, R. L., and Traber, M. G., Chronic vitamin E deficiency promotes vitamin C deficiency in zebrafish leading to degenerative myopathy and impaired swimming behavior., Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, vol. 157, no. 4, pp. 382-9, 2013.
P. Bebas, Goodall, C. P., Majewska, M., Neumann, A., Giebultowicz, J. M., and Chappell, P. E., Circadian clock and output genes are rhythmically expressed in extratesticular ducts and accessory organs of mice., The FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol. 23, no. 2, pp. 523-33, 2009.
J. D. Alvarez, Hansen, A., Ord, T., Bebas, P., Chappell, P. E., Giebultowicz, J. M., Williams, C., Moss, S., and Sehgal, A., The circadian clock protein BMAL1 is necessary for fertility and proper testosterone production in mice., Journal of biological rhythms, vol. 23, no. 1, pp. 26-36, 2008.
P. E. Chappell, White, R. S., and Mellon, P. L., Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line., The Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 23, no. 35, pp. 11202-13, 2003.
L. E. Bermudez, Inderlied, C. B., Kolonoski, P., Petrofsky, M., and Young, L. S., Clarithromycin, dapsone, and a combination of both used to treat or prevent disseminated Mycobacterium avium infection in beige mice., Antimicrobial agents and chemotherapy, vol. 38, no. 12, pp. 2717-21, 1994.
L. E. Bermudez, Petrofsky, M., Wu, M., and Young, L. S., Clarithromycin significantly improves interleukin-12-mediated anti-Mycobacterium avium activity and abolishes toxicity in mice., The Journal of infectious diseases, vol. 178, no. 3, pp. 896-9, 1998.
L. E. Bermudez, Nash, K., Petrofsky, M., Young, L. S., and Inderlied, C. B., Clarithromycin-resistant mycobacterium avium is still susceptible to treatment with clarithromycin and is virulent in mice., Antimicrobial agents and chemotherapy, vol. 44, no. 10, pp. 2619-22, 2000.
S. A. Semevolos, Ducharme, N. G., and Hackett, R. P., Clinical assessment and outcome of three techniques for jejunal resection and anastomosis in horses: 59 cases (1989-2000)., Journal of the American Veterinary Medical Association, vol. 220, no. 2, pp. 215-8, 2002.
E. D. Lassen, Pearson, E. G., Long, P., Schmotzer, W. B., Kaneps, A. J., and Riebold, T. W., Clinical biochemical values of llamas: reference values., American journal of veterinary research, vol. 47, no. 10, pp. 2278-80, 1986.