Journal Article
M. McNabe, Tennant, R., Danelishvili, L., Young, L., and Bermudez, L. E.,
“Mycobacterium avium ssp. hominissuis biofilm is composed of distinct phenotypes and influenced by the presence of antimicrobials.”,
Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, vol. 17, no. 5, pp. 697-703, 2011.
M. McNabe, Tennant, R., Danelishvili, L., Young, L., and Bermudez, L. E.,
“Mycobacterium avium ssp. hominissuis biofilm is composed of distinct phenotypes and influenced by the presence of antimicrobials.”,
Clin Microbiol Infect, vol. 17, no. 5, pp. 697-703, 2011.
L. Danelishvili, Rojony, R., Carson, K. L., Palmer, A. L., Rose, S. J., and Bermudez, L. E.,
“Mycobacterium avium subsp. hominissuis effector MAVA5_06970 promotes rapid apoptosis in secondary-infected macrophages during cell-to-cell spread.”,
Virulence, vol. 9, no. 1, pp. 1287-1300, 2018.
J. P. Bannantine, Huntley, J. F. J., Miltner, E., Stabel, J. R., and Bermudez, L. E.,
“The Mycobacterium avium subsp. paratuberculosis 35 kDa protein plays a role in invasion of bovine epithelial cells.”,
Microbiology (Reading, England), vol. 149, no. Pt 8, pp. 2061-9, 2003.
M. Alonso-Hearn, Eckstein, T. M., Sommer, S., and Bermudez, L. E.,
“A Mycobacterium avium subsp. paratuberculosis LuxR regulates cell envelope and virulence.”,
Innate immunity, vol. 16, no. 4, pp. 235-47, 2010.
M. Alonso-Hearn, Patel, D., Danelishvili, L., Meunier-Goddik, L., and Bermudez, L. E.,
“The Mycobacterium avium subsp. paratuberculosis MAP3464 gene encodes an oxidoreductase involved in invasion of bovine epithelial cells through the activation of host cell Cdc42.”,
Infection and immunity, vol. 76, no. 1, pp. 170-8, 2008.
M. Alonso-Hearn, Patel, D., Danelishvili, L., Meunier-Goddik, L., and Bermudez, L. E.,
“The Mycobacterium avium subsp. paratuberculosis MAP3464 gene encodes an oxidoreductase involved in invasion of bovine epithelial cells through the activation of host cell Cdc42.”,
Infect Immun, vol. 76, no. 1, pp. 170-8, 2008.
J. Early, Fischer, K. A., and Bermudez, L. E.,
“Mycobacterium avium uses apoptotic macrophages as tools for spreading.”,
Microbial pathogenesis, vol. 50, no. 2, pp. 132-9, 2011.
S. Subbian, Mehta, P. K., Cirillo, S. L. G., Bermudez, L. E., and Cirillo, J. D.,
“A Mycobacterium marinum mel2 mutant is defective for growth in macrophages that produce reactive oxygen and reactive nitrogen species.”,
Infection and immunity, vol. 75, no. 1, pp. 127-34, 2007.
L. Danelishvili, Babrak, L., Rose, S. J., Everman, J., and Bermudez, L. E.,
“Mycobacterium tuberculosis alters the metalloprotease activity of the COP9 signalosome.”,
mBio, vol. 5, no. 4, 2014.
L. Danelishvili, Babrak, L., Rose, S. J., Everman, J., and Bermudez, L. E.,
“Mycobacterium tuberculosis alters the metalloprotease activity of the COP9 signalosome.”,
mBio, vol. 5, no. 4, 2014.
L. Danelishvili, McGarvey, J., Li, Y. -jun, and Bermudez, L. E.,
“Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells.”,
Cell Microbiol, vol. 5, no. 9, pp. 649-60, 2003.
L. Danelishvili, McGarvey, J., Li, Y. -jun, and Bermudez, L. E.,
“Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells.”,
Cellular microbiology, vol. 5, no. 9, pp. 649-60, 2003.
L. Danelishvili, Everman, J., and Bermudez, L. E.,
“Mycobacterium tuberculosis PPE68 and Rv2626c genes contribute to the host cell necrosis and bacterial escape from macrophages.”,
Virulence, vol. 7, no. 1, pp. 23-32, 2016.
L. Danelishvili, Shulzhenko, N., Chinison, J. J. J., Babrak, L., Hu, J., Morgun, A., Burrows, G., and Bermudez, L. E.,
“Mycobacterium tuberculosis Proteome Response to Antituberculosis Compounds Reveals Metabolic "Escape" Pathways That Prolong Bacterial Survival.”,
Antimicrob Agents Chemother, vol. 61, no. 7, 2017.
Y. -jun Li, Petrofsky, M., and Bermudez, L. E.,
“Mycobacterium tuberculosis uptake by recipient host macrophages is influenced by environmental conditions in the granuloma of the infectious individual and is associated with impaired production of interleukin-12 and tumor necrosis factor alpha.”,
Infection and immunity, vol. 70, no. 11, pp. 6223-30, 2002.
L. E. Bermudez, Kolonoski, P., and Young, L. S.,
“Natural killer cell activity and macrophage-dependent inhibition of growth or killing of Mycobacterium avium complex in a mouse model.”,
Journal of leukocyte biology, vol. 47, no. 2, pp. 135-41, 1990.
L. E. Bermudez, Wu, M., Enkel, H., and Young, L. S.,
“Naturally occurring antibodies against Mycobacterium avium complex.”,
Annals of clinical and laboratory science, vol. 19, no. 6, pp. 435-43, 1989.
M. Petrofsky and Bermudez, L. E.,
“Neutrophils from Mycobacterium avium-infected mice produce TNF-alpha, IL-12, and IL-1 beta and have a putative role in early host response.”,
Clinical immunology (Orlando, Fla.), vol. 91, no. 3, pp. 354-8, 1999.
L. E. Bermudez and Martins, C. A.,
“[Non-traumatic Clostridium infections].”,
AMB : revista da Associação Médica Brasileira, vol. 33, no. 1-2, pp. 38-9, 1987.