Found 231 results
Author [ Title(Asc)] Type Year
Filters: Author is Luiz E Bermudez  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
M. Alonso-Hearn, Patel, D., Danelishvili, L., Meunier-Goddik, L., and Bermudez, L. E., The Mycobacterium avium subsp. paratuberculosis MAP3464 gene encodes an oxidoreductase involved in invasion of bovine epithelial cells through the activation of host cell Cdc42., Infection and immunity, vol. 76, no. 1, pp. 170-8, 2008.
M. Alonso-Hearn, Eckstein, T. M., Sommer, S., and Bermudez, L. E., A Mycobacterium avium subsp. paratuberculosis LuxR regulates cell envelope and virulence., Innate immunity, vol. 16, no. 4, pp. 235-47, 2010.
J. P. Bannantine, Huntley, J. F. J., Miltner, E., Stabel, J. R., and Bermudez, L. E., The Mycobacterium avium subsp. paratuberculosis 35 kDa protein plays a role in invasion of bovine epithelial cells., Microbiology (Reading, England), vol. 149, no. Pt 8, pp. 2061-9, 2003.
L. Danelishvili, Rojony, R., Carson, K. L., Palmer, A. L., Rose, S. J., and Bermudez, L. E., Mycobacterium avium subsp. hominissuis effector MAVA5_06970 promotes rapid apoptosis in secondary-infected macrophages during cell-to-cell spread., Virulence, vol. 9, no. 1, pp. 1287-1300, 2018.
M. McNabe, Tennant, R., Danelishvili, L., Young, L., and Bermudez, L. E., Mycobacterium avium ssp. hominissuis biofilm is composed of distinct phenotypes and influenced by the presence of antimicrobials., Clin Microbiol Infect, vol. 17, no. 5, pp. 697-703, 2011.
M. McNabe, Tennant, R., Danelishvili, L., Young, L., and Bermudez, L. E., Mycobacterium avium ssp. hominissuis biofilm is composed of distinct phenotypes and influenced by the presence of antimicrobials., Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, vol. 17, no. 5, pp. 697-703, 2011.
T. Bodmer, Miltner, E., and Bermudez, L. E., Mycobacterium avium resists exposure to the acidic conditions of the stomach., FEMS microbiology letters, vol. 182, no. 1, pp. 45-9, 2000.
N. Mohagheghpour, Gammon, D., van Vollenhoven, A., Hornig, Y., Bermudez, L. E., and Young, L. S., Mycobacterium avium reduces expression of costimulatory/adhesion molecules by human monocytes., Cellular immunology, vol. 176, no. 1, pp. 82-91, 1997.
Y. Li, Miltner, E., Wu, M., Petrofsky, M., and Bermudez, L. E., A Mycobacterium avium PPE gene is associated with the ability of the bacterium to grow in macrophages and virulence in mice., Cellular microbiology, vol. 7, no. 4, pp. 539-48, 2005.
L. Danelishvili and Bermudez, L. E., Mycobacterium avium MAV_2941 mimics phosphoinositol-3-kinase to interfere with macrophage phagosome maturation., Microbes Infect, vol. 17, no. 9, pp. 628-37, 2015.
F. J. Sangari, Goodman, J., Petrofsky, M., Kolonoski, P., and Bermudez, L. E., Mycobacterium avium invades the intestinal mucosa primarily by interacting with enterocytes., Infection and immunity, vol. 69, no. 3, pp. 1515-20, 2001.
F. J. Sangari, Parker, A., and Bermudez, L. E., Mycobacterium avium interaction with macrophages and intestinal epithelial cells., Frontiers in bioscience : a journal and virtual library, vol. 4, pp. D582-8, 1999.
D. Wagner, Sangari, F. J., Kim, S., Petrofsky, M., and Bermudez, L. E., Mycobacterium avium infection of macrophages results in progressive suppression of interleukin-12 production in vitro and in vivo., Journal of leukocyte biology, vol. 71, no. 1, pp. 80-8, 2002.
S. Y. Kim, Goodman, J. R., Petrofsky, M., and Bermudez, L. E., Mycobacterium avium infection of gut mucosa in mice associated with late inflammatory response and intestinal cell necrosis., Journal of medical microbiology, vol. 47, no. 8, pp. 725-31, 1998.
F. J. Sangari, Petrofsky, M., and Bermudez, L. E., Mycobacterium avium infection of epithelial cells results in inhibition or delay in the release of interleukin-8 and RANTES., Infection and immunity, vol. 67, no. 10, pp. 5069-75, 1999.
N. Azouaou, Petrofsky, M., Young, L. S., and Bermudez, L. E., Mycobacterium avium infection in mice is associated with time-related expression of Th1 and Th2 CD4+ T-lymphocyte response., Immunology, vol. 91, no. 3, pp. 414-20, 1997.
E. C. Miltner and Bermudez, L. E., Mycobacterium avium grown in Acanthamoeba castellanii is protected from the effects of antimicrobials., Antimicrobial agents and chemotherapy, vol. 44, no. 7, pp. 1990-4, 2000.
R. Tenant and Bermudez, L. E., Mycobacterium avium genes upregulated upon infection of Acanthamoeba castellanii demonstrate a common response to the intracellular environment., Current microbiology, vol. 52, no. 2, pp. 128-33, 2006.
M. J. Harriff, Danelishvili, L., Wu, M., Wilder, C., McNamara, M., Kent, M. L., and Bermudez, L. E., Mycobacterium avium genes MAV_5138 and MAV_3679 are transcriptional regulators that play a role in invasion of epithelial cells, in part by their regulation of CipA, a putative surface protein interacting with host cell signaling pathways., J Bacteriol, vol. 191, no. 4, pp. 1132-42, 2009.
M. J. Harriff, Danelishvili, L., Wu, M., Wilder, C., McNamara, M., Kent, M. L., and Bermudez, L. E., Mycobacterium avium genes MAV_5138 and MAV_3679 are transcriptional regulators that play a role in invasion of epithelial cells, in part by their regulation of CipA, a putative surface protein interacting with host cell signaling pathways., Journal of bacteriology, vol. 191, no. 4, pp. 1132-42, 2009.
Y. Yamazaki, Danelishvili, L., Wu, M., Macnab, M., and Bermudez, L. E., Mycobacterium avium genes associated with the ability to form a biofilm., Appl Environ Microbiol, vol. 72, no. 1, pp. 819-25, 2006.
Y. Yamazaki, Danelishvili, L., Wu, M., Macnab, M., and Bermudez, L. E., Mycobacterium avium genes associated with the ability to form a biofilm., Applied and environmental microbiology, vol. 72, no. 1, pp. 819-25, 2006.
M. McNamara, Danelishvili, L., and Bermudez, L. E., The Mycobacterium avium ESX-5 PPE protein, PPE25-MAV, interacts with an ESAT-6 family Protein, MAV_2921, and localizes to the bacterial surface., Microb Pathog, vol. 52, no. 4, pp. 227-38, 2012.
M. McNamara, Danelishvili, L., and Bermudez, L. E., The Mycobacterium avium ESX-5 PPE protein, PPE25-MAV, interacts with an ESAT-6 family Protein, MAV_2921, and localizes to the bacterial surface., Microbial pathogenesis, vol. 52, no. 4, pp. 227-38, 2012.
F. J. Sangari, Goodman, J., and Bermudez, L. E., Mycobacterium avium enters intestinal epithelial cells through the apical membrane, but not by the basolateral surface, activates small GTPase Rho and, once within epithelial cells, expresses an invasive phenotype., Cellular microbiology, vol. 2, no. 6, pp. 561-8, 2000.

Pages