Journal Article
D. D. Rockey, Chesebro, B. B., Heinzen, R. A., and Hackstadt, T.,
“A 28 kDa major immunogen of Chlamydia psittaci shares identity with Mip proteins of Legionella spp. and Chlamydia trachomatis-cloning and characterization of the C. psittaci mip-like gene.”,
Microbiology (Reading), vol. 142 ( Pt 4), pp. 945-53, 1996.
D. D. Rockey, Chesebro, B. B., Heinzen, R. A., and Hackstadt, T.,
“A 28 kDa major immunogen of Chlamydia psittaci shares identity with Mip proteins of Legionella spp. and Chlamydia trachomatis-cloning and characterization of the C. psittaci mip-like gene.”,
Microbiology (Reading, England), vol. 142 ( Pt 4), pp. 945-53, 1996.
D. D. Rockey, Grosenbach, D., Hruby, D. E., Peacock, M. G., Heinzen, R. A., and Hackstadt, T.,
“Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion.”,
Mol Microbiol, vol. 24, no. 1, pp. 217-28, 1997.
D. D. Rockey, Grosenbach, D., Hruby, D. E., Peacock, M. G., Heinzen, R. A., and Hackstadt, T.,
“Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion.”,
Molecular microbiology, vol. 24, no. 1, pp. 217-28, 1997.
T. Hackstadt, Rockey, D. D., Heinzen, R. A., and Scidmore, M. A.,
“Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.”,
EMBO J, vol. 15, no. 5, pp. 964-77, 1996.
T. Hackstadt, Rockey, D. D., Heinzen, R. A., and Scidmore, M. A.,
“Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.”,
The EMBO journal, vol. 15, no. 5, pp. 964-77, 1996.
D. D. Rockey, Heinzen, R. A., and Hackstadt, T.,
“Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells.”,
Mol Microbiol, vol. 15, no. 4, pp. 617-26, 1995.
D. D. Rockey, Heinzen, R. A., and Hackstadt, T.,
“Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells.”,
Molecular microbiology, vol. 15, no. 4, pp. 617-26, 1995.
R. A. Heinzen, Scidmore, M. A., Rockey, D. D., and Hackstadt, T.,
“Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis.”,
Infection and immunity, vol. 64, no. 3, pp. 796-809, 1996.
R. A. Heinzen, Scidmore, M. A., Rockey, D. D., and Hackstadt, T.,
“Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis.”,
Infect Immun, vol. 64, no. 3, pp. 796-809, 1996.
T. Hackstadt, Scidmore, M. A., and Rockey, D. D.,
“Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion.”,
Proc Natl Acad Sci U S A, vol. 92, no. 11, pp. 4877-81, 1995.
T. Hackstadt, Scidmore, M. A., and Rockey, D. D.,
“Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion.”,
Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 4877-81, 1995.
T. Hackstadt, Fischer, E. R., Scidmore, M. A., Rockey, D. D., and Heinzen, R. A.,
“Origins and functions of the chlamydial inclusion.”,
Trends Microbiol, vol. 5, no. 7, pp. 288-93, 1997.
T. Hackstadt, Fischer, E. R., Scidmore, M. A., Rockey, D. D., and Heinzen, R. A.,
“Origins and functions of the chlamydial inclusion.”,
Trends in microbiology, vol. 5, no. 7, pp. 288-93, 1997.
H. Su, Raymond, L., Rockey, D. D., Fischer, E., Hackstadt, T., and Caldwell, H. D.,
“A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells.”,
Proc Natl Acad Sci U S A, vol. 93, no. 20, pp. 11143-8, 1996.
H. Su, Raymond, L., Rockey, D. D., Fischer, E., Hackstadt, T., and Caldwell, H. D.,
“A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells.”,
Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 20, pp. 11143-8, 1996.
J. P. Bannantine, Rockey, D. D., and Hackstadt, T.,
“Tandem genes of Chlamydia psittaci that encode proteins localized to the inclusion membrane.”,
Molecular microbiology, vol. 28, no. 5, pp. 1017-26, 1998.
J. P. Bannantine, Rockey, D. D., and Hackstadt, T.,
“Tandem genes of Chlamydia psittaci that encode proteins localized to the inclusion membrane.”,
Mol Microbiol, vol. 28, no. 5, pp. 1017-26, 1998.
D. D. Rockey, Fischer, E. R., and Hackstadt, T.,
“Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy.”,
Infect Immun, vol. 64, no. 10, pp. 4269-78, 1996.
D. D. Rockey, Fischer, E. R., and Hackstadt, T.,
“Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy.”,
Infection and immunity, vol. 64, no. 10, pp. 4269-78, 1996.
M. A. Scidmore, Rockey, D. D., Fischer, E. R., Heinzen, R. A., and Hackstadt, T.,
“Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry.”,
Infect Immun, vol. 64, no. 12, pp. 5366-72, 1996.
M. A. Scidmore, Rockey, D. D., Fischer, E. R., Heinzen, R. A., and Hackstadt, T.,
“Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry.”,
Infection and immunity, vol. 64, no. 12, pp. 5366-72, 1996.